Hydro-elastoplastic analysis of floating plate structures

Joo-Seong Yoon

Mechanical Engineering 14, November, 2016

Contents

- 1. Introduction
- 2. Hydroelastic analysis of floating plate structures
- 3. Consideration of multiples hinge connections
- 4. Hydro-elastoplastic analysis of floating plate structures
- 5. Conclusions & future works

Introduction

- Introduction to hydrodynamic analysis
- Brief history
- Methods for hydroelastic analysis
- Related problems and studies
- Research problems

Introduction to hydrodynamic analysis

Figure source : google image

- Offshore market demands
 - Resources
 - **Space**

- Design of floating structures
 - Complexity
 - Size
 - Risk

Importance of hydrodynamic analysis of floating structures has been increasing

Introduction to hydrodynamic analysis

Video source : YouTube

Research development activities (2009~2012)

Hirdaris et al., *Loads for use in the design of ships and offshore structures. Ocean Eng* 2014;78:131-74.

Floating structure - wave interaction is a key topic

Introduction to hydrodynamic analysis

- Problems of the interaction
- Be coupled together
- Need to be solved simultaneously

Assumption : Static equilibrium state

Problem 1. Structural dynamics

 Motions of floating structures responding to wave-induced forces

 Waves responding to motions of the wetted surface of the structures

Brief history

* Events in the hydrodynamic analysis of floating structure – wave interaction

1980s
1990s
2000s

Rigid - body motion analysis

- Pioneering works on the motion of floating rigid bodies in frequency and time domain
- Dealing with various problems of potential flows and hydrodynamics
- Lamb(1945), John (1950), Stoker(1956), Wehausen (1960), Cummins(1962), Newman(1977), ...
- Development of numerical methods for rigid body - wave interactions in frequency domain
- WAMIT WaveAnalayisMIT(MIT, 1987)
- Development of numerical methods for rigid body - wave interactions in time domain
 TiMIT(MIT,1999)
- Improve numerical algorithms for complex structure nonlinear wave interactions

Hydroelastic analysis

- 2D hydroelastic analysis of ships in frequency domain developed by Bishop (1979)
- 3D hydroelastic analysis of **ships** extended by Wu (1984)
- Research projects for very large floating structures(VLFS)
- Mega-float(Japan, 1995-2001)
- MOB Mobile Offshore Base(USA, 1997-2000)

Mega-float

MOB

- Development of numerical methods for hydroelastic analysis of VLFS in frequency and time domain
- Kashiwagi(2000), Khabakhpasheva(2002), Taylor(2007), ...
- 3D floating structures wave interactions in frequency domain
- HYDRAN(Riggs, 2003)
- PADO(CMSS, 2013)

Floating elastic plate structure – wave interactions

Floating Airport

Features of pontoon-type VLFSs

- Huge horizontal size compared to the wavelengths
- Relatively small bending rigidity

Considerations in the analysis

- Elastic deformations are more important than rigid body motions
- Hydroelastic analyses should be performed to accurately predict the bending moment and deflection
- The VLFSs have mainly been modeled as thin elastic plate structures

Floating Bridge

♦ Frequency-domain analysis

		Descriptions		
Structural dynamics	Modal Expansion Method	 Modal functions as dry modes or simple mathematical modes of a structure 	 Free-free beam modes(Maeda 1995, Ohmatsu 1998) 2D polynomial functions(Wang 2001) Eigenvectors(PADO 2013) 	
	Direct Method	 Solving directly structural dynamic problems without any help of modal functions 	 FEM(Yago 1996, Kim 2007, HYDRAN 2003, PADO 2013) B-spline Galerkin scheme(Kashiwagi 1998) 	
Hydro- dynamics (based BEM)	Free-surface Green Function Method	 Discretizing only wetted surface of structures in boundary integral equations 	 CPM-Constant panel method(HYDRAN 2003) BEM(Yago 1996, PADO 2013) B-spline(Kashiwagi 1998) 	
	Rankine Panel Method	 Discretizing all boundary surfaces in boundary integral equations 	 HOBEM-Higher Order BEM(Kim 2007) 	
Coupling (Solution procedure)	Conventional Method	 Solving step by step potential problems and structural dynamic problems 	In most studiesHYDRAN	
	Direct Coupling Method	 Solving simultaneously coupled structural and fluid equations 	 Floating beam structure (Khabakhpasheva 2002) Floating plate structure(Taylor 2007) 3D floating structure(PADO 2013) 9 	

K.T. Kim, P.S. Lee and K.C. Park , A direct coupling method for 3D hydroelastic analysis of floating structures, Int J Numer Meth Eng 2013:96:842-66

✤ Time-domain analysis

		Descriptions		
Hydro- dynamics	Direct Integral Method	 Solving time-dependent structure and fluid equations by a direct integration 	 FEM-CPM(Liu 2002) FEM(Qiu 2005, Kyoung 2006) Green-Naghdi theory – FDM(Ertekin 2014) 	
	Cummins Method	 Deriving time-dependent hydrodynamic forces by the convolution integral and impulse response functions 	 Modal Expansion Method - BEM (Kashiwagi 2000) FEM - HOBEM(Lee 2003) 	

Convolution integral

By the convolution integral, the response to the input ip(t) is given by:

$$rp(t) = \int_{-\infty}^{\infty} irf(t-\tau)ip(\tau)d\tau$$

- Concepts of the Cummins method
 - Impulsive velocity of floating structures

Impulsive wave elevation

$$\eta(t) = \delta(t)$$

Impulse response functions

Diffraction impulse – function [D(t)]

By the **convolution integral**, the hydrodynamic forces at time *t* are given by:

$$R_{HF}(t) = A\ddot{g}(t) + \int_{-\infty}^{t} B(t-\tau)\dot{g}(\tau)d\tau + \int_{-\infty}^{\infty} D(t-\tau)\eta(\tau)d\tau$$

Related problems and studies - Frequency-domain analysis

***** Hydroelastic responses of VLFS considering various conditions

* Mitigation of hydroelastic responses * Wave energy extraction * Ice – wave interactions

D.C.Hong, et al., Ocean Eng. 2007;34;696-708

R.P.Gao, et al., Ocean Eng. 2011;38;1957-1966

E.Loukogeorgaki, et al., J Fluids Struct. 2012;31;103-124

V.A.Squire, Cold Reg Scil[®]Bechnol. 2007;49;110-133

Related problems and studies - Time-domain analysis

* Effect of aircraft landing on and taking off from VLFS

M.Kashiwagi, J Mar Sci Technol. 2004;9;14-23

* Nonlinear effects of a mooring system or nonlinear waves

Research problems

Problem 1. Mitigation or enhancement of hydroelastic responses

- Hydroelastic analysis of floating plate structures
- Bending moment reduced by hinge connections
- Modeling hinge connections

Problem 2. Hydrodynamic responses beyond the elastic limit

- Nonlinear structural behaviors under severe external loads
- Modeling plastic behaviors in hydrodynamic analysis
- Employing the Cummins method

Hydro-elastoplastic analysis of floating plate structures

Hydroelastic analysis of floating plate structures

- Formulation of floating plate structures
- Formulation of fluid
- Matrix formulation of coupled equations

Formulation of floating plate structures

* Assumptions

- Homogeneous, isotropic, linear-elastic material
- Displacement and strain are infinitesimally small

* Governing equations

$$\frac{\partial \sigma_{ij}}{\partial x_j} - \rho_s g \delta_{i3} - \rho_s \ddot{u}_i = 0 \qquad \text{in} \quad V_s$$

$$\sigma_{ij}n_j = -pn_i \qquad \text{on} \quad S_B$$

Principle of virtual work

$$\int_{V_s} \rho_s \ddot{u}_i \delta u_i dV + \int_{V_s} C_{ijkl} e_{kl} \delta e_{ij} dV - \int_{S_B} p \, \delta u_3 dS = 0$$

***** Structural equations for the steady state

$$-\omega^{2} \int_{V_{S}} \rho_{s} \widetilde{u}_{i} \delta \widetilde{u}_{i} dV + \int_{V_{S}} C_{ijkl} \widetilde{e}_{kl} \delta \widetilde{e}_{ij} dV - \int_{S_{B}} \widetilde{p} \delta \widetilde{u}_{3} dS = 0$$
$$u_{i}(\mathbf{x};t) = \operatorname{Re}\left\{ \widetilde{u}_{i}(\mathbf{x})e^{jwt} \right\}$$

J Imaginary number

Formulation of fluid

***** Assumptions

Incompressible, inviscid and irrotational flow

 V_{s}

for $x_3 = 0$

on S_{G}

on S_F

- Amplitude is small
- Draft is zero

* Governing equations

 $\phi(\mathbf{x};t) = \operatorname{Re}\left\{\widetilde{\phi}(\mathbf{x})e^{j\omega t}\right\}$

$$abla^2 \widetilde{\phi} = 0$$
 in

$$\frac{\partial \widetilde{\phi}}{\partial x_3} = \frac{\omega^2}{g} \widetilde{\phi}$$

$$\frac{\partial \widetilde{\phi}}{\partial x_3} = 0$$

$$\sqrt{R}\left(\frac{\partial}{\partial R}+jk\right)\left(\tilde{\phi}-\tilde{\phi}_{I}\right)=0$$
 on $S_{\infty}(R\to\infty)$

on S_{B} jωu,

18

Formulation of fluid

Soundary integral equations

• Employing Green's theorem and the free-surface Green's function $\nabla^2 G = -4\pi \delta(x_1 - \xi_1) \delta(x_2 - \xi_2) \delta(x_3 - \xi_3)$

$$\int_{V_{F}} \left(\nabla^{2} G(\mathbf{x};\boldsymbol{\xi}) \widetilde{\phi}(\mathbf{x}) - G(\mathbf{x};\boldsymbol{\xi}) \nabla^{2} \widetilde{\phi}(\mathbf{x}) \right) dV = \int_{S} \left(G(\mathbf{x};\boldsymbol{\xi}) \frac{\partial \widetilde{\phi}(\mathbf{x})}{\partial n(\mathbf{x})} - \frac{\partial G(\boldsymbol{\xi})}{\partial n(\boldsymbol{\xi})} \widetilde{\phi}(\mathbf{x}) \right) dS$$
$$4\pi \widetilde{\phi}(\mathbf{x}) + p.v. \int_{S_{B}} \left(\widetilde{\phi}(\boldsymbol{\xi}) \frac{\omega^{2}}{g} + \frac{\partial \widetilde{\phi}(\boldsymbol{\xi})}{\partial n(\boldsymbol{\xi})} \right) G(\mathbf{x};\boldsymbol{\xi}) dS_{\boldsymbol{\xi}} = 4\pi \widetilde{\phi}_{I}(\mathbf{x}) \quad \text{for } \mathbf{x} \text{ on } S_{B}$$

 $\boldsymbol{\xi}$: Source point vector p.v.: Cauchy principal value

Using body boundary condition and linearized Bernoulli equation

$$-u_{3} - \frac{p}{\rho_{w}g} - \frac{\omega^{2}}{4\pi\rho_{w}g^{2}} p.v. \int_{S_{B}} pG \, \mathrm{d}S_{\xi} = j\frac{\omega}{g}\widetilde{\phi}_{I} \qquad \text{for } \mathbf{x} \text{ on } S_{B}$$

✤ Fluid equations for the steady state

$$-\int_{S_{B}} \widetilde{u}_{3} \,\delta \widetilde{p} \,\mathrm{d}S - \frac{1}{\rho_{w}g} \int_{S_{B}} \widetilde{p} \,\delta \widetilde{p} \,\mathrm{d}S - \frac{\omega^{2}}{4\pi\rho_{w}g^{2}} \int_{S_{B}} p.v. \int_{S_{B}} \widetilde{p}G \,\mathrm{d}S_{\xi} \,\delta \widetilde{p} \,\mathrm{d}S_{x} = j\frac{\omega}{g} \int_{S_{B}} \widetilde{\phi}_{I} \,\delta \widetilde{p} \,\mathrm{d}S \qquad \text{on} \quad S_{B}$$
¹⁹

Matrix formulation of coupled equations

Coupled equations

$$-\omega^{2}\int_{V_{s}}\rho_{s}\widetilde{u}_{i}\delta\widetilde{u}_{i}dV + \int_{V_{s}}C_{ijkl}\widetilde{e}_{kl}\delta\widetilde{e}_{ij}dV - \int_{S_{B}}\widetilde{\rho}\,\delta\widetilde{u}_{3}dS = 0$$

$$-\int_{S_B} \widetilde{u}_3 \,\delta \widetilde{p} \,\mathrm{d}S - \frac{1}{\rho_w g} \int_{S_B} \widetilde{p} \,\delta \widetilde{p} \,\mathrm{d}S - \frac{\omega^2}{4\pi\rho_w g^2} \int_{S_B} p.v. \int_{S_B} \widetilde{p} \,\mathrm{d}S_{\xi} \,\delta \widetilde{p} \,\mathrm{d}S_x = j \frac{\omega}{g} \int_{S_B} \widetilde{\phi}_I \,\delta \widetilde{p} \,\mathrm{d}S$$

Matrix formulation for a hydroelasitc analysis in frequency domain

- Discretization of the structural and fluid equations by FEM and BEM
- 4-node MITC plate finite element
- 4-node quadrilateral boundary element

$$\begin{bmatrix} -\omega^2 \mathbf{S}_M + \mathbf{S}_K & -\mathbf{C}_{up} \\ -\mathbf{C}_{up}^T & -\mathbf{F}_M - \mathbf{F}_G \end{bmatrix} \begin{bmatrix} \hat{\mathbf{u}} \\ \hat{\mathbf{p}} \end{bmatrix} = \begin{bmatrix} \mathbf{0} \\ \hat{\mathbf{R}}_{\mathbf{I}} \end{bmatrix}$$

Consideration of multiple hinge connections

- Motivation
- Previous studies
- Research description
- Modeling hinge connections
- Dimensionless quantities
- Validation
- Numerical analyses
- Closure

Motivation

* Hydroelastic responses of floating plate structures with multiple hinge connections

***** When using more hinge connections,

the bending moment of cross sections can be effectively **reduced**. However, the deflection could be **increased**, and **vice versa**.

 For the design of a floating airport or an wave energy converter, hinge connections can be helpful or harmful.

Previous studies

* Development of modeling methods of hinge connections in the conventional method

Hinge deflection modes

Analytically evaluation for simple problems C.H. Lee, J.N. Newman, J Fluid Struct, 2000;14;957-70 J.N. Newman, Mar Struct, 2005;16; 169-180

Numerically evaluation for complicated problems

S. Fu et al., Ocean. Eng. 2007;34;1516-31R.P. Gao et al, Ocean. Eng. 2011; 38 1957-66E. Loukogeorgaki et al., J Fluid Struct, 2012;31;103-24

Constraints enforced by penalty technique

Modification of the equation of motion B.W. Kim et al., 15th ISOPE, 2005; 210-17

The effect of the number of hinge connections has not been studied well

Reducing hydroelastic responses

Gao(2011) - 1 hinge, position, wave angle, length and depth, plate's aspect ratio Kim(2005) - 2 hinges, hinge-linked stiffness and shape of breakwaters, wave length

Enhancing hydroelastic responses

Loukogeorgaki(2012) - 1hinge, position, wave angle and length

Hinge deflection modes

S. Fu et al

To study effects of multiple hinge connections on hydroelastic responses of floating plate structures subjected to regular waves,

we propose a numerical procedure to effectively model hinge connections

- \checkmark Assuming linear elastic material and potential flow
- \checkmark Based on the **direct coupling method** in frequency domain
- ✓ Using a **dynamic condensation method**
- ✓ Validation through comparison with previous experimental and numerical results

and investigate the maximum bending moment and deflection through numerical analyses

- ✓ Using **dimensionless quantities**
- ✓ Considering the number of hinge connections, several structural and wave conditions

Modeling hinge connections

✤ Since the bending moments are zero at hinge connections,

we release rotational DOFs associated with the bending moments at the element local nodes

 $\theta_{x_2}^3$ and $\theta_{x_2}^4$ can be released by the dynamic condensation method

Dimensionless quantities

Related parameters

1. Aspect ratio

 $L_r = \frac{L}{B}$

2. Dimensionless bending stiffness

$$S = \frac{EI}{\rho_{w}gL^{5}}$$

3. Dimensionless wave length

$$\alpha = \frac{\lambda}{L}$$

Related responses

1. RAO of deflection

$$\overline{u}_3 = \frac{|u_3|}{a}$$

2. Dimensionless bending moment

$$\overline{M}_{x_2x_2} = \frac{\left| M_{x_2x_2} - \rho_w g L^2 \right|}{\rho_w g L^2}$$

3. Maximum deflection ratio

$$R_{u_3} = \frac{\left| u_3 \right|_{\text{max}}}{\left| u_3 \right|_{\text{max}}^{\text{no hinge}}}$$

4. Maximum bending moment ratio

$$R_{M} = \frac{\overline{M}_{\text{max}}}{\overline{M}_{\text{max}}^{\text{no hinge}}}$$

* Comparison with previous experimental results conducted by S.P. Cho (2013)

27

* Comparison with previous numerical results conducted by S. Fu (2007)

Numerical model

Parameter	Value
Width(<i>B</i>)	60m
Thickness(H)	2m
Draft(d)	0.5m
Bending stiffness(EI)	$4.77 \times 10^{11} \text{Nm}^2$
Dimensionless bending stiffness(S)	1.954×10^{-5}

Hydroelastic responses

* Effects of multiple hinge connections under several structural and wave conditions

Numerical models

(a) (b) L L B L/2B \mathbf{X}_{2} X_2 X₁ \mathbf{X}_1 (c) (d) L L В |B|-L/4 \mathbf{X}_2 \mathbf{X}_{2} X_1 X_1

- Cases of problem
 - > Related floating plate structures

 $L_r = 1.0, 5.0$

$$S = 3.04 \times 10^{-4}, 3.04 \times 10^{-5}, 3.04 \times 10^{-6}$$

Related incident waves

$$\alpha = 0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.4$$

 $\theta = 0^{\circ}$

***** Effects on the maximum bending moment

• Maximum bending moment ratio R_{M}

* Effects on the maximum deflection

• Maximum deflection ratio R_{u_3}

***** Summary for effect of the number of hinge connections

	Aspect ratio	Dimensionless bending stiffness	Dimensionless Wavelength
	$L_r = \frac{L}{B}$	$S = \frac{EI}{\rho_w g L^5}$	$\alpha = \frac{\lambda}{L}$
Reducing the maximum bending moment	Larger	Stiffer	Longer
Enhancing the maximum deflection	Larger	Stiffer	Shorter

✓ When the floating plate structure is very flexible, the use of hinge connections is not effective

Hydro-elastoplastic analysis of floating plate structures

- Motivation
- Previous studies
- Research descriptions
- Structural dynamics associated with material nonlinearity
- Hydrodynamics in the time domain
- Floating plate structure wave interactions
- Numerical procedure
- Validation
- Numerical examples

Motivation

***** When severe external loads applied,

nonlinear behaviors of floating structures (ex. yielding, buckling, and fracturing) can occur.

✤ For safer and more economically effective designs,

it is essential to accurately predict hydrodynamic responses beyond elastic limit.

Previous studies

- To analyze ship wave interactions considering plastic deformations few numerical methods have been developed.
 - 1. K. Iijima et al. (2011) Dynamic collapse behavior of a ship's hull girder in waves

2. W. Liu et al. (2015) – 2D hydroelastoplasticity method of a ship in extreme waves

Previous studies

* Few researches related to nonlinear behaviors of VLFS have been conducted.

M. Fujikubo (2005) – Structural analysis for the design of VLFS

It is difficult to accurately predict hydro-elastoplastic responses for floating plate structures in waves through previous methods

Research descriptions

To develop a effective numerical procedure of 3D hydro-elastoplastic analysis for floating plate structure in waves

Problem I. Structural dynamics associated with material nonlinearity

- ✓ Using **incremental equilibrium equations** in the nonlinear finite element analysis
- ✓ Considering the 3D von Mises plasticity model
- \checkmark Adopting implicit return mapping algorithm to simulate the plastic behaviors

Problem II. Hydrodynamics in the time domain

- \checkmark Based on the **Cummins method**
- \checkmark Using the boundary element method for frequency-domain analysis

Problem III. Floating plate structure – wave interactions

- ✓ Constructing the convolution integral of IRFs with nodal incremental displacements
- ✓ Formulating a time-domain incremental coupled equations of motion

Structural dynamics associated with material nonlinearity

\Leftrightarrow Governing equations at time t+ Δ t

$$\frac{\partial \sigma_{ij}}{\partial x_j} - \rho_s g \delta_{i3} - \rho_s \ddot{u}_i = 0 \qquad \text{in } V_s$$

$$\sigma_{ij}n_j = -pn_i \qquad \text{on } S_B$$

$$\sigma_{ij}n_j = -f_i^{S_L}n_i \qquad \text{on } S_L$$

***** Linearization of the internal virtual work

$$\int_{V_s} \sigma_{ij}(\mathbf{x}; t + \Delta t) \delta e_{ij} dV \approx \int_{V_s} C^{EP}_{ijkl}(\mathbf{x}; t) e_{ij} \delta e_{ij} dV + \int_{V_s} \sigma_{ij}(\mathbf{x}; t) \delta e_{ij} dV$$

✤ Incremental equilibrium equations

$$\int_{V_s} \rho_s \ddot{u}_i(\mathbf{x};t+\Delta t) \delta u_i dV + \int_{V_s} C_{ijkl}^{EP}(\mathbf{x};t) e_{kl} \delta e_{ij} dV - \int_{S_B} \rho_w g \Delta u_3 n_i \delta u_i dS = -\int_{S_B} p_d(\mathbf{x};t+\Delta t) n_i \delta u_i dS + \int_{S_L} f_i^{S_L}(\mathbf{x};t+\Delta t) n_i \delta u_i dS + \int_{S_B} \rho_w g u_3(\mathbf{x};t) n_i \delta u_i dS - \int_{V_s} \sigma_{ij}(\mathbf{x};t) \delta e_{ij} dV$$

✤ Matrix form by finite element discretization

$$\mathbf{M}\ddot{\mathbf{U}}(t+\Delta t) + (\mathbf{K}(t)+\mathbf{C})\Delta \mathbf{U} = \mathbf{R}_{HF}(t+\Delta t) + \mathbf{R}_{S_{L}}(t+\Delta t) - \mathbf{C}\mathbf{U}(t) - \mathbf{F}(t)$$
38

Structural dynamics associated with material nonlinearity

- * Von Mises plastic model with isotropic hardening
 - Yield condition

$$f_{y} = \frac{1}{2}S_{ij}S_{ij} - \frac{1}{3}\sigma_{y}^{2}$$

• Flow rule (Prandtl-Reuss equation)

$$de_{ij}^{P} = d\lambda \frac{\partial f_{y}}{\partial \sigma_{ij}} = d\lambda S_{ij}$$

Isotropic hardening

$$\sigma_{y} = \sigma_{y}(\overline{e}^{P}) \qquad d\overline{e}^{P} = \sqrt{\frac{2}{3}} de_{ij}^{P} de_{ij}^{P}$$

Hydrodynamics in the time domain

\clubsuit Initial conditions at time t = 0

 $\phi(\mathbf{x};t) = 0 \qquad \text{for } x_3 \text{ on } S_F$ $\dot{\phi}(\mathbf{x};t) = 0 \qquad \text{for } x_3 \text{ on } S_F$

Hydrodynamics in the time domain

* IRFs associated with finite element model

Impulsive velocity in transverse direction at node k

Finite element basis functions

Employing a set of piecewise linear functions constructed by the shape functions of the finite elements sharing the node

***** Hydrodynamic forces at time $t + \Delta t$

$$\mathbf{R}_{HF}(t+\Delta t) = -\mathbf{A}\ddot{\mathbf{U}}(t+\Delta t) - \int_{-\infty}^{t+\Delta t} \mathbf{B}(t+\Delta t-\tau)\dot{\mathbf{U}}(\tau)d\tau + \int_{-\infty}^{\infty} \mathbf{D}(t+\Delta t-\tau)\eta(\tau)d\tau$$

Floating plate structure – wave interactions

* Time-domain incremental coupled equations of motion

$$(\mathbf{M} + \mathbf{A})\ddot{\mathbf{U}}(t + \Delta t) + \int_{-\infty}^{t + \Delta t} \mathbf{B}(t + \Delta t - \tau)\dot{\mathbf{U}}(\tau)d\tau + (\mathbf{K}(t) + \mathbf{C})\Delta\mathbf{U}$$
$$= \mathbf{R}_{S_{L}}(t + \Delta t) + \int_{-\infty}^{\infty} \mathbf{D}(t + \Delta t - \tau)\eta(\tau)d\tau - \mathbf{C}\mathbf{U}(t) - \mathbf{F}(t)$$

* Evaluation of IRFs using the Fourier transform

$$\mathbf{B}(t) = \frac{2}{\pi} \int_0^\infty \mathbf{b}(\omega) \cos(\omega t) d\omega$$
$$\mathbf{A} = \mathbf{a}(\omega) + \frac{1}{\omega} \int_0^\infty \mathbf{B}(\tau) \sin(\omega \tau) d\tau$$
$$\mathbf{D}(t) = \frac{1}{\pi} \int_0^\infty \left[\operatorname{Re}(\mathbf{R}_w(\omega)) \cos(\omega t) - \operatorname{Im}(\mathbf{R}_w(\omega)) \sin(\omega t) \right] d\omega$$

Nonlinear solution procedure

(a) Evaluation of the IRFs

- Direct coupling method
- 4-node MITC plate finite element
- 4-node quadrilateral boundary element
- Filon quadrature

(b) Equilibrium iteration loop

- Full Newton-Raphson method
- Newmark method

(c) Stress integration

- Implicit return mapping algorithm
- Newton-Raphson method

* Comparison with results of a hydroelastic experiment conducted by Endo (1996)

Problem description

* Numerical modeling in LS-DYNA

Floating plate structure

 $Dimension-9.75\!\times\!1.95\!\times\!0.545$

Shell elements -48×8

✓ Air

Dimension – 48.75×9.75×0.95

3D solid elements $-480 \times 80 \times 24$

✓ Water

Dimension $-48.75 \times 9.75 \times 1.9$ 3D solid elements $-480 \times 80 \times 48$

1

FSI modeled by "Constrained Lagrange in Solid"
 Computing coupling forces by a penalty method

* Comparison with LS-DYNA for results of hydro-elastoplastic problem

- Problem description
 - ✓ Considering elastic-perfectly-plastic material
 - $\sigma_{y} = 30 kpa \qquad \qquad E = 0.6661 Gpa$

✓ Present

: Node point
: Integration point

Horizontal plane

Total time – 2.5s

Cross-section

Time step size – 0.001s

✓ LS-DYNA

Shell element -48×8

5-point Lobatto integration

✤ Effective plastic strain

Present

* Computational times

	Items	[hr]	Ratio [%]
Present (performed in PC)	Evaluation of impulse response functions	1.252	43.7
	Performance of the time increment loop	1.614	56.3
	Total	2.866	100.0
LS-DYNA (performed in a high performance computer)		15.375	536.5

Present - Intel (R) core (TM) i7-2600 3.40GHz CPU, 16 GB RAM

LS-DYNA - 5.3TFLOPS, 248 CPUs - Intel Xeon 2.60GHz, 2TB RAM, 16CPUs, Massively parallel processing(MPP)

✤ Floating double plate structure considering two load cases

- Problem description
 - ✓ Based on the **phase** I Mega-float model
 - ✓ Considering bilinear isotropic hardening plastic model
 - E = 206Gpa $\sigma_y = 238Mpa$

$$\rho_s = 7800 kg / m^3 \qquad E_P = 0.05E$$

- ✓ Load I : An impact load
- ✓ Load II : A dead load and an incident wave

H. Suzuki. Overview of Megafloat: Concept, design criteria, analysis, and design. Mar Struct 2005;18;111-32.

* Load Case I : An impact load

- Crash of a Phantom RF-4E aircraft
 - ✓ Hit point

✓ Impact load curve

✓ Numerical model

F.O. Henkel, D. Klein. Variants of the load case airplane crash. Transactions SMiRT 19 Toronto 2007; J03/2.

Plate elements -48×8

5-point Newton-Cotes integration for the upper and lower layers

Total time – 3s

Time step size -0.001s

✤ Effective plastic strain

* Load Case II : An impact load a dead load and an incident wave

Problem description

✓ Numerical model

Plate elements -48×8

5-point Newton-Cotes integration for the upper and lower layers

Total time - 60s

Time step size -0.002s

Z5

Z6

✤ Effective plastic strain

Conclusion & Future works

Conclusion

- 1. A numerical procedure for a hydroelastic analysis of floating plate structure with multiple hinge connections is proposed
- 2. We investigated **the effect of the number of hinge connections** on the maximum bending moment and deflection in floating plate structures.
- 3. We developed a nonlinear procedure for a **hydro-elastoplastic analysis** considering elastoplastic behaviors and linear waves
- 4. The hydro-elastoplastic problems of floating plate structures subjected to an impact load or an incident wave under a dead load are solved

Future works

- Experimental studies for verification of the proposed procedure and understanding of hydro-elastoplastic behaviors of floating plate structures
 - ✓ Experimental set-up
 - ✓ Dimensional analysis

Improvement of the proposed method

- \checkmark Computation efficiency through modal analysis or modification of the convolutions
- ✓ Hydro-elastoplastic analysis of 3D ships or offshore platforms
- \checkmark Nonlinear behaviors of structure and fluid

Thank you