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1. Introduction



FEM in Engineering Fields

Aerospace Engineering

Biomedical Engineering



Finite Elements

Problems

Larger and
more complex models

Solutions

=  Advancement of computing devices

= |mprovement computational methods and algorithms

Needs

Higher accuracy
Lower computational costs

= Development of finite elements and Improvement of FE solutions
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Finite Elements

» For improving FE solutions
1. Reduced integrations & assumed strain methods
v" ANS (Assumed Natural Strain) and MITC (Mixed Integration of Tensorial Components).
2. Enrichment methods
v" Enriched FEM, XFEM (eXtended FEM).
3. Strain smoothing methods

v" Node, Edge, Face and Cell-based S-FEM (Smoothed FEM).

» Strain-smoothed element (SSE) method

v" The method requires no special smoothing domains.

v The method construct smoothed strain field within an element.

Edge-based smoothing SSE method



Polygonal Elements
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Volumetric locking

» Volumetric locking

* Asthe Poisson’s ratio approaches 0.5 (nearly incompressible material),

the element stiffens significantly. ¢

* It results in much smaller displacements than expected and

excessively discontinuous stress estimation.

* Reduced integration allowed for an easier way to avoid volumetric locking, .

but spurious zero-energy modes (or hourglass modes) may occur. (Standard Q4 element)

» Separation of volumetric term and deviatoric term

. . —
Stiffness matrix K = K® 4 K" Related to volume change

In a 4-node 2D element In a 3-node 2D element
q
X X K : constant
vol __ vol
» K" =K"(0,0)
K X

X X

Deviatoric term: Volumetric term: Assumed strain cannot be applied
(bi)linear strain field Constant assumed strain



Objectives

Strain-smoothed element (SSE) method
= SSE method provides further improved solutions

without requiring additional degrees of freedom.

= SSE method has been successfully applied

to 3-node triangular and 4-node quadrilateral 2D solid elements.

Polygonal elements

= High level of flexibility in mesh transition, and refinement.

v
= Further research is required to develop polygonal finite elements

that provide more accurate and reliable solutions.

Volumetric locking
= The phenomenon that occurs on the material properties.
" |n 3-node triangular element, there is difficulty in applying

constant volumetric strain field.



2. Strain-smoothed element method




Strain smoothing

> Finite element formulation

KU=F=F;+F,. K= Zl J4nB" DB dQ, F, =i1 [ H”bda, K=Y H"Ttdr.

T

Strain-displacement relation &™ =B u"™ where B"' =

m=1

Ffar 0 m@.}
pat

» Smoothing operation

€ » &,
:.st.rain defined for J‘ 8(X)CI)k(X)dQ : smoothed‘ strain defined
finite elements. ot for smoothing domain.

Q" . kth smoothing domain.

» Smoothing function

1/ 4%, xe QW A" : area of the smoothing domain Q.

O, (x) :{

0, x g Q" @ (x) : smoothing function for domain Q.
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Strain smoothing

» Chen et al. (2001)
- The strain smoothing method was first proposed for the Galerkin mesh-free method.

» Liu et al. (2007)
- A cell-based S-FEM was proposed for 2D solid mechanics problems.
- An element is subdivided into finite number of smoothing domains (cells).

> Liuetal. (2009)
- A node-based S-FEM was proposed for 2D solid mechanics problems.
- It gives overly soft solutions and wider bandwidth of stiffness matrix.

» Liu et al. (2009)
- An edge-based S-FEM was proposed for 3-node triangular 2D solid element.
- It shows the best performance among the previous strain smoothing methods.

12



Strain-smoothed element (SSE) method

> Lee and Lee (2018)
- Strain-smoothed element was first proposed for 3-node triangular 2D solid element.

3-node element (Lee and Lee, 2018) In a 3-node solid element

» 1ststrain smoothing

, 1

s A(k) A(e)g(e) + A(k)g(k) )
p=1/6 A(e) + A(k) ( )

! q=4/6
X c(p.q)

» 2" strain smoothing within elements

u(p,p),/\\\\b(q, )
X ‘x\\ 2
P 2] A 1

>

("(1) A(3)),

4-node element (Lee et al. , 2021) e —_ 1 &0 +2?),
2
1 (A(Z) é(3)).
\\Cix T[3 X,G?:
» Smoothed strain field
T4 ::: T
)< . X —(e) |:1 _ (}" +5— zp):| e + —p b —p 80'
Gl G2 q—p q—p q 4
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Strain-smoothed element (SSE) method

In a 3-node solid element

> Smoothed strain field

= Strain fields in the defined smoothing domains = Strain fields in finite element domains
= Constant strain fields = (Bi-)Linear strain fields
= |Improved accuracy
SSE method for various elements
- A strain-smoothed triangular and tetrahedral finite element was proposed. (2018)
- A strain-smoothed MITC3+ shell element was proposed. (2019)
- A strain-smoothed quadrilateral finite element was proposed. (2021)

14



3. Strain-smoothed polygonal finite elements



Polygonal elements

>

» Biabanaki and Khoei (2012)

Various shape functions of the polygonal elements

Wachspress (1975)

- A rational basis using areas with an arbitrary point and vertices.
- It is only applied to convex polygonal elements.

- It has been used in mesh free methods.

Sibson (1980) A\
- Coordinates based Voronoi cells (set of bisectors) within a set of nodes was proposed. ‘E‘J

Floater (2003)

- A finite element basis using angles with an arbitrary point and vertices was proposed.
- It can be applied to concave polygonal elements.

Application of polygonal elements for various problems

- Polygonal elements were applied for solid mechanics problems with conformal
decomposition of meshes.

Khoei et al. (2015)
- Modeling of crack propagation with minimal remeshing was proposed e
using polygonal elements.

Nguyen et al. (2020)
- Crack growth analysis of interfacial cracks was proposed using polygonal elements.
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Polygonal elements

In 3-node and 4-node elements and polygonal elements

It is difficult to apply the Gauss quadrature rules to polygonal elements.

Alternatively..

(L,1)

(1,-1)

»
(0,0

Triangulation Quadrangulation Rational polynomial

(Sukumar and Tabarraei, 2004) (Talischi et al, 2014) Gauss quadrature
(Thomes and Menandro, 2020)
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SSE method in polygonal elements

= Sub-division of polygonal elements

Element m
(target element)

Constant strain
1. Strain smoothing J-Qm S(X)CDk(X)dQ q)k(x) = {

2. Numerical integration




SSE method in polygonal elements

= 1ststrain smoothing with piecewise linear shape functions.

Geometry of the kth sub-triangle

1 n
X=X, +hX, + "X, (where X, = ;sz )
i=1

Element m
(target element)

Displacement interpolation

1 n
u=nhu, +hu +hu, (where u, = _Zui )
n o

(hy=r, hy=s, hy =1-r—x)

I
3 1

- Strain field within the kth sub-triangle (of the target element m)

k_(m) _ T _ kyp(m)  (m)
e =g, &, 2¢,] ="B™"u

where
‘B ='B, ‘B, - 'B,|. u”=[u uw, - uT,
| 1 1 T
@(k_l)hl’x " é;khz’x +_h3’x 0 é;(k—l)]/Ll,y + 5ikh2,y +—h3,y
‘B = n .
i 1 1
0 é;(k—1)h1,y + é‘ikhz,y + ;hly é‘i(k—l)h],x + é;khz,x + ;h3,x

: the strain-displacement matrix corresponding to node i
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SSE method in polygonal elements

= 1ststrain smoothing with piecewise linear shape functions.

Element m

(target element)

kg™ A" . (constant) strain and area of the kth sub-triangle of the target element m

e®  A® :the strain and area of its neighboring sub-triangle

- The smoothed strain between the *g¢™ and g®

A 1 m m . . . A
g® = e (47 ™ + AW (If there is no neighboring element, 8 = “g™ )
k

20



SSE method in polygonal elements

= 2"d strain smoothing by assigning the strains to the center point of sub-quadrilateral.

k+1th sub-triangle

The smoothed strain between two neighboring sub-triangles
_ 1

(m) (k) (m) p(k+1)
g =— (A" + 4
k k
A,Em) + AIETI)

k+1 €

The strain at the center point (center strain)

n

> A%,

k=1

Center point of

kth sub-triangle Midpoint of kth sub-quadrilateral Ec =
the edge A(m)
24
k=1
5 - The nodal strains
N (using the natural coordinates of the sub-triangle)
) LE (R, 8)
8 (7 —(k -~ —
A (io51) . zy _ {”1 S1:| Ea—&(-1r-s5)
' T iy —k) | = =
S g gV \n s | &g-g(0-nr-s,)

g,
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SSE method in polygonal elements

Interpolated smoothed strains are assigned to Gauss points of the sub-triangles.

T enl
.

p=1/6

B (ns) Linear interpolation o

\k\ c(p.q)

N x_‘,(xjsy:,) N
/ ) a(p.p),” >~ _blq.p)
; T A X D .
e " X, = KX +8,X, (1 -7 —5,)%, - = >
g /
\% Strains at Gauss points of the sub-triangle

x50 33) E(m) — ]_;(m)ﬁ(M)

X, (x, %)

Numerical integration over the polygonal element

K(Wl) — E(ﬂl)Tc(M)E(M)dV(M)

)y
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Basic numerical tests

> lIsotropic element test

* The proposed elements yield the same results regardless of the element node numbering sequences.

» Zero energy mode test

= The stiffness matrix of the 2D element must contain only three zero-energy modes.

= The zero-energy mode tests are performed using the polygons from triangle to hexagon.

(4.5)

(3.3)

(0,0) (0.,0) (3.0)

0,0)

> Patch tests

(0.0)

=  The minimum number of DOFs is constrained to prevent rigid body motions.
= Appropriate loadings are applied to obtain a constant stress field.

= The same stress value should be obtained at all points on the elements to pass the patch tests.

(0,10) (5,10) (10,10)

= The proposed polygonal elements practically pass the patch tests.

(0,8)

(0,0) (10,0)
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Numerical examples

> Finite elements considered

Wachspress : Polygonal elements based on Wachspress coordinate

= Mean value : Polygonal elements based on mean value coordinate

= ES-FEM : Edge-based smoothed polygonal finite element
(Nguyen-Thoi et al., 2011)

= CS-FEM : Cell-based smoothed polygonal finite element
(Dai et al., 2007)

= SSE (proposed) : Strain-smoothed polygonal finite elements

> Reference solution

= Reference solutions are calculated using a 64 x64 regular mesh of 9-node 2D solid elements.
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Numerical examples

1) Infinite plate with a circular hole

DL E LI IEEEEEEEEE —>
i Ya
-« ' 5 > Ly " Force
— ¢ ! S analytical solutions of infinite plate with a hole
4— r 5 —» aﬂ(r,@):p[lf[;cos29+cos40j+za:cos49J
‘7 /B‘ ‘\9 X - o, (r,0)=p —a—z(lCOSZH—cos49j—£cos49
i azle i — p=1 L r*\2 2
1—‘ —» gxy(r,a):p[—ai(;sin 20+sin40)+;ajsin49]
— . "= Boundary condition
4— — u=0 along BC and v=0 along AE
‘75 77777777777777777777777777777777777777777777777777777777777777777777 4’ . . . .
= Material property (plane strain condition)
E=3x10", v=0.3,
N, =13 (N=2) N =42 (N=4) N, =148 (N=38)

» Meshes ( N elements along the upper edge)

N =2,4,8, 16.
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Numerical examples

1) Infinite plate with a circular hole

= Convergence curves

N =13 (N=2) N =42 (N=4) N, =148 (N=8)
-0.8
-1.21
-1.6F
i
. 241
53
en
2 2.8
More accurate 3.2
-3.61
—8— Wachspress
—7/— Mean value
-4 —A—ES-FEM
>~ CS-FEM
4.4} - —&— SSE (proposed)

-1.2-0.9 -0.6 -0.3
logh

More elements _

h=1/N
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Numerical examples

1) Infinite plate with a circular hole
= Shear stress distributions (in 2.5x2.5 area)

Wachspress Mean value

Reference

&
| —

-0.4

CS-FEM ES-FEM

/11114

A
v

27

SSE (proposed)
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Numerical examples

2) Cook’s skew beam

| 48 |

o |< #l A

A y f
16 1P=1

i A f__

A A
44 44

v x; v
N.=7 (N=2) N,=22 (N=4)

Force

Distributed shearing force P =1

Boundary condition

Left edge is clamped

Material property (plane stress condition)
E=3x10", v=03

Meshes ( V elements along the upper edge)
N =2,4,8,16




Numerical examples

2) Cook’s skew beam

" Convergence curves

0
-0.4 1
-0.81
-l.21
@6t
=11}
=l
2t
More
-2.4
accurate
—&8— Wachspress
2.8 —— Mean value
' —A—ES-FEM
O CS-FEM
3.2+ —&— SSE (proposed)

-1.2 -0.9 -0.6 -0.3
logh

S

More elements

= Normalized horizontal displacements (4, /u,,, ) at point A

More
accurate

ATRTLERAARRRARARN

44

ANRIANRNAS

29

44

—+8— Wachspress
—7/—Mean value
0_4€ —4A—ES-FEM
CS-FEM
¢ —c—SSE (proposed)
7 22 76 280

More elements




Numerical examples

2) Cook’s skew beam

= Computational costs

0
—H&— Wachspress
—/— Mean value
-1 —A—ES-FEM
>— CS-FEM
—©— SSE (proposed)
2t
1§
=
.iOD -3
More accurate
4}
5t
_6 1 L 1 1
-2 -1 0 1 2 3

log(Computation time)

- More computation time

* Computations are performed in a PC with Intel Core i7-4790, 3.60GHz CPU, and 8 GB RAM.

Skyline solver is used for solving linear equations.
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Numerical examples

2) Cook’s skew beam

= Computational costs

O T T
—&— Wachspress
—7/— Mean value
1k , —A—ES-FEM
s &— CS-FEM
—&— SSE (proposed)
2t _
Polygonal mesh
l }
an -3 r
2
4t
More accurate
-5r
_6 1 L 1 1 L
-2 -1 0 1 2 3 4
log(Computation time)
Triangular mesh

‘ More computation time

from the polygons
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Numerical examples

3) Dam problem

=  Force

Compressive surface force

5—-y 0<y<5
fs= /s
(y-5) 5<5y<10

= Boundary condition

The block is clamped along its bottom
= Material property (plane strain condition)

E=3x10", v=0.2

N, =13 (N=4) N, =42 (N=8§)

1
= Meshes
N5 (¥e8) N7 (¥o125) 1- N elements along the left edge
I— N=2,4,8,16
2 . 4 2 - meshes constructed using the paving and cutting algorithm
| | N =5, 12.5, 25, 50 (N=L,/h, =10/(grid size) )
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Numerical examples

3) Dam problem

= Convergence curves

—_—— -0.8 r r :
0.8 A
12t 127 |
-1.6
2t
qu
& 24}
2.8t
-3.27 —&— Wachspress —+&— Wachspress
—— Mean value —7— Mean value
—4&A—ES-FEM 36k || —&—ES-FEM
3.6 & CS-FEM -3 & CS-FEM
—©—SSE (proposed) —<— SSE (proposed)
-1.5 -1.2 -0.9 -0.6 -1.8 -1.5 -1.2 -0.9 -0.6
logh logh
Meshes 1 Meshes 2
N, =13 (N=4) N,=42 (N=8) N =148 (N=16)

N =15 (¥=3) N, =74 (N=125) N =260 (N=25) N, =962 (N=30)
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Numerical examples

4) Ring problem

Force

Normal surface force p=1

Boundary condition

Symmetric problem :

u=0 along AB and v=0 along CD

Material property (plane stress condition)

E=3x10°, v=03

N,=16 (N=2)

N, =56 (N=4)

N, =205 (N=8)

Meshes
constructed using the paving and cutting algorithm

N=2,48 ( N=Le/h =2 /(grid size) )

grid
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Numerical examples

4) Ring problem

= Convergence curves = Von Mises stress distributions
Wachspress Mean value CS-FEM ES-FEM  SSE (proposed)
: ?
N, =16
1.2
1.6
2+
w24t/
g N, =56 ) ‘r ) »r
-2.8 | ‘ ‘
3.2}
—&— Wachspress
a6l e Moan value Reference

logh

- N W A O O

] —A—ES-FEM
—<4—CS-FEM
4t 1 —©—SSE (proposed)
-0.9 -0.6 -0.3
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Comments on proposal

e Comparison between polygonal elements and triangular elements (28 2/& /M0 W)

Cook’s skew beam Additional node (DOFs) at the center of polygon
48 -
ok 14
A y ﬁ
16 ;P=1
R 4

FALLARLANAARRARARRRARRAR RN

44 44
Triangular mesh
Polygonal mesh &
R Xy from the polygonal mesh
Computational cost
From standard T3 From 3-node triangular SSE
0 T T 0 . . T T
‘E'i:q‘f“hsl"f“ —8— Wachspress
—— ¢an valuc an ve
gt — A ES-FEM 1 at TE‘&;‘E:}“
CS-FEM & CS-FEM
—&— SSE (proposed) SSE (triangle)
21 ] -2 —&— SSE (proposed) | ]|
3 E
2 L
-4+ 4 r
5t 5t
-6 : : : : : -6 : : : : :
-2 -1 0 1 2 3 4 -2 -1 0 1 2 3 4
log(Computation time) log(Computation time)
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Comments on proposal

e Conditions of applicability of Polygonal SSE (853} 1Y)
For signed areas of all sub-triangles,

1
convex and weakly concave polygonal : AIEM) - E(XCyk—l — X Ve XV TNV XY, — X)) >0

by Lien S, Kajiya JT (1984)

Signed area of sub-triangle, 4™

(a) (b) (c)

Signedarea: 4" >0 A" =0 A™ <0
Convex h g
or weakly concave Concave
(allowed) (not allowed)
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Comments on proposal

* Condition of mesh quality of polygonal mesh (&8 2H/Z & WH)

Automatic meshing based on Voronoi diagram

Delaunay Voronoi
triangulation diagram

smalledge/

(C. talischi et al, 2012)

The iteration is performed to ensure uniform distribution of center points of the polygons.

|

While the mesh size becomes uniform, issues may arise with the sizes of edges.

For a n-side polygon,

21
Angle of sub-triangle: 8 < €| —
n

€ : user-defined tolerance (Generally, 0.1)

The edge can be collapsed into a single node.
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Reference (Von-Mises stress)
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4. Treatment of volumetric locking
in the strain-smoothed element method




Volumetric locking

=  Bulk modulus in (nearly) incompressible material

I Volume ¥/ Bulk modulus k : ratio of the pressure change to the volume change
* P
NG ;AP AP AV
S N K=—V-— <+ = ~K
N S——— e AV v
| | d
P> ! |
| | | - —> P = —K& P . hydrostatic stress
S
N | |
| |

Ey . volumetric strain

Volumetric locking occurs in situations where the volumetric strain is very small.
P=—KE¢&

Extremely large material property  Very small volumetric strain

In the volumetric locking situations, X X

* Theinterpolation function fails to reflect the small strain.
* Almost same volume change across all integration points. (over-constraint)
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Volumetric locking

= Treatments for volumetric locking

» Mixed formulations for displacement and pressure
- The degree of freedom of pressure due to volumetric strain is considered.
- In the 3-node triangular element, it is known that the order of the pressure term is not sufficient.

> (Selective) reduced integration T
- Reduced integration resolves locking but can lead to spurious zero-energy modes; x
to address this, reduced integration is performed only over the volumetric term. <

- It is the most widely known method, but it is impossible to perform for the 3-node triangular element.

» Mixed and enhanced assumed strain (Simo et al. 1992, Braess 1998)
- Enriched strains are assumed from displacement and pressure fields.
- These methods generally require additional internal degrees of freedom.

=  Volumetric locking in strain smoothing methods

» Node-based smoothed(NS) FEM
- Strain smoothing through the node-based smoothing domain is performed.
- It is known to be immune to volumetric locking.
- It shows somewhat lower performance due to an overly soft analysis result.

> Selective ES/NS FEM
- To enhance the performance of the element, edge-based and node-based FEM are combined.

- Depending on the combination, there might be some performance differences.
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Volumetric locking

= Separation of volumetric and deviatoric strain

(In the plane strain condition)

: : AV
Volumetric strain: ¢ =—=¢_+¢,=B""u

1
. . . d [ d
Deviatoric strain: & =¢. —58"’ 5l.j = Bl.jevu

ij i
1 (Ci =Ci =26, =)
Stiffness matrix : K = J. (K + QG) B" )T B dv +I B C B qy = K" +K*
3 ] ij i
Volumetric term Deviatoric term

K= ; ) Kvol
30-2v) v —0.5, — 0

To avoid excessive stiffening of the volumetric term, additional treatment is required.
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Volumetric locking in SSE

In the case of 4-node quadrilateral finite element

(C. Lee et al, 2021)

1
alk) _ (m) k ( ) (k) o (k)
&€ = A(m) A(k) (Am "+ A & )
k

Smoothed strain between the sub-triangle and its neighboring sub-triangle

Smoothed strains in integration points of the element

e ?;x"/
1 k-1 Ak A
€, = oo AT AT withk=123.4 ke
1 T Ay PO
Constant volumetric strain Deviatoric strain
vol—(m) (m) A(k) (k) dev—=""  —(m _l vol = (™M
(m)ZA (& +é5) i T T4 ¢ 0y
(constant value in an element)

(values in 4 integration points)

* This procedure cannot be directly applied to 3-node triangular element
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Treatment of volumetric locking in 3-node triangular element

= SSE method procedure in 3-node triangular finite element

Strains in target and neighboring element Smoothed strains in integration points

‘ 1 o
o) _ (e)g(e) () (D)
€ =40 (A +A"e")

#

T = %(ﬁ(n 189

_ 1, .
g, = 5(8(1) +8%)

_ 1. N
g, = 5(8(2) +8%)

X X X X X X
X X X
x . . . . . .
X % X The smoothed strains obtained by SSE are assigned to integration points,
« x % | x x X and a linear strain field within the element is constructed.
X
X X X X X
P _
x| 3 N E(r,s):{l— (r+s—2p):|§,+ Peg+2lg
X q—p q-p q-p
X X
y X
X | x X X X
X )
X
X % X % X
X
X X X
X X X X
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Treatment of volumetric locking in 3-node triangular element

=  Smoothed volumetric strains in a node by strain-smoothed element method

Deviatoric strain field in an element

X X X X X X 1 _ r—p_ s—p_
« y g(r s):{l— (r+s-2p) |5+ p£2+ P
x q-p q9-p " q9-p
x x
% X
X X X
[+ x X
X X X
X X X
X X
x X
x x . . .
. X > Smoothed volumetric strain in a node
X | x X x
X b
X n
X % X % X Z}’“’A‘_
X ﬂ) — k=1
node k L
24
X x X k=1
X e X X

clement 7
area : 4,
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Treatment of volumetric locking in 3-node triangular element

=  Smoothed volumetric strains and a strain field within an element

X X i !
54
X X X (Emi) — k=l P
nodek u
x ZAk
X X < % k=1
L x X
X )
% x X x x
X X
x X
. . —vol
x X\ % Smoothed volumetric strain (g”” )
. X $% x % l
b \
X % elemefn i
X v vl area : 4,
(")
3
X X
x X ol
J (gvo )
: 3
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Treatment of volumetric locking in 3-node triangular element

= Node-based smoothed element and nodal strain from SSE

Smoothed FEM

* Y

Node-based smoothed FEM

Requires a special smoothing domain

Volumetric strain from SSE

x X
x | % X
X
Xxx
X | x
X | X
X % X
X x
x| %
x
XXX X
x
X
X X
X
X X

Smoothed volumetric strain

Strain field in an element

Strain field is defined within an element
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Basic numerical tests

> lIsotropic element test

* The proposed elements yield the same results regardless of the element node numbering sequences.

> Zero energy mode test
= The number of zero-energy modes of the stiffness matrix in rigid body condition is counted.

= The stiffness matrix of the 2D element must contain only three zero-energy modes.

> Patch tests

=  The minimum number of DOFs is constrained to prevent rigid body motions.

= Appropriate loadings are applied to obtain a constant stress field.

= The same stress value should be obtained at all points on the elements to pass the patch tests.

A y N
(0.10) (10,10) .10} (10,10) _ (ofi0) (1q10) L 10) _
V) \
YA [2,?]\ 'ir—_::""_x-/{-77-77-77(-};'—3)\\\ YA (2,3]I\I\ {_’;;_:';'"'/-/(-J-77-77(-:;'-3)\\\\ V4 Ly
(0.0) " (10,0) " (10,0) v " g
Mesh for patch test Normal stress condition Shear stress condition
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Numerical examples

> Finite elements considered

= ES-FEM Edge-based smoothed finite element
(Nguyen-Thoi et al., 2011)

= NS-FEM : Node-based smoothed finite element
(Liu et al., 2009)

= SSE : Strain-smoothed 3-node triangular finite elements
without volumetric locking treatment

= Proposed : Strain-smoothed 3-node triangular finite elements
with volumetric smoothed strains

> Evaluation method

2
uref _uhH 2 T
S H _ —
> with |u,,, uhHS = .[QM Ag' AtdQ, .

= Convergence curves obtained using the s-norm  E, =

uref S

> Reference solution

= Reference solutions are calculated using a N=96 regular mesh of 9-node 2D solid elements

with reduced integration for the volumetric term.
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Numerical examples

1) Square block problem

I = Force
P Compression pressure of total magnitude P=1

at the right half top of the structure

= Boundary condition

The block is clamped along its bottom

’ . = Material property (plane strain condition)

E=3x10", v=0.3,0.49,0.499 and 0.4999

= Regular and distorted Meshes

N x N elements; N =4, 8, 16 and 32.

Regular mesh Distorted mesh
(N =4)
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Numerical examples

1) Square block problem

= Convergence curves (Regular meshes)

Square block problem (Regular meshes)

ES-FEM NS-FEM SSE Proposed
0 0 0 0 : :
Volumetric locking
-0.4 -04 L J -0.4 04 L J
-0.8 -0.8 L J -0.8 -0.8 L J
1.2 1.2 L ] -1.2 1.2 |
1.6 1.6 | i 1.6 1.6 |
= -~ -~ -~
= = = =
£ 2 2 £
- -2 - 2L J - -2 - 2L
More accurate
24 24 L J -2.4 24 L
2.8 L i 2.8 L i 2.8 L i 2.8 L
32 L J 32 L J 32 L J 32 L
-3.6 | | | I -3.6 | I | I -3.6 | I | I -3.6
-1.5 -1.2 -09 -06 -1.5 -1.2 -09 -0.6 -1.5 -12  -09 -0.6
log h log & log &
_ More elements
h=1/N
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Convergence curves (Distorted meshes)

1) Square block problem

Square block problem (Distorted meshes)
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Numerical examples

2) Infinite plate with a circular hole

e —

— Vs, 3 L = Force

— ¢ £ L analytical solutions of infinite plate with a hole

4_ ¥ 5 —’ aﬂ(r,@):p[lf[;cos29+cos40j+za:cos49J

“ B — " 1t

9 o _(r = —i —COS —COS —LCOS

4_‘ _b oxy(rﬁ):p[—aj(;sin 20+sin40)+zajsin49j

— —

— s = Boundary condition

4— —> u=0 along BC and v=0 along AE

D 7 = Material property (plane strain condition)
E=3x10", v=0.3,0.49,0.499 and 0.4999

= Meshes (Two sets of N x N elements that
are symmetric about the diagonal)
N =4,8,16 and 32.
(N =8)
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Numerical examples

2) Infinite plate with a circular hole

= Convergence curves

ES-FEM NS-FEM SSE Proposed
0 T T T T 0 T T T T 0 T T T T 0 T T T T
-04 | _ -04 | | -04 | | -04 L i
-0.8 L _ -0.8 L _ -0.8 L _ -0.8 | _
Volumetriic locking
-1.2 | i -1.2 | i -1.2 | is oceurred 1.2 L i

-~ ~ -~ -~
= 2 L i = 2 L i = 2 L i = 2 L i
on o0 on on
2 2 2 2
24 | i 24 | i 24 | i 24 | |
More accurate
28 L | 28 L | 28 | i 28 | 4
32 | i 32 | i 32 | i 32 | o v03
o v=0.49
36 L i 36 L i 36 L i 3.6 | — O v=0499
v=0.4999
'4 1 1 1 1 '4 1 1 1 1 '4 1 1 1 1 ‘4 1 1 1 1 |
15 12 09 -06 15 12 09 -06 215 -12 09 -06 -15 -12 09 -0.6
log h log h log h log h
_ More elements

h=1/N
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Numerical examples

3) Cook’s skew beam

. 48 Y = Force
T o4y 4 Distributed shearing force P =1
16 EPZI = Boundary condition
T T Left edge is clamped
= Material property (plane strain condition)
44 44 E=3x107, v=0.3,0.49,0.499 and 0.4999
= Regular and distorted Meshes
v W N x N elements; N =4,8, 16 and 32.

istorted mesh

U \

Regular mesh
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Numerical examples

3) Cook’s skew beam

log E

More accurate

Convergence curves (Regular meshes)

04

-0.8

24

-2.8

-3.2

ES-FEM

Cook’s skew beam problem (Regular meshes)

NS-FEM

0.4

-0.8

log E

24

-2.8

-3.2

log E

h=1/N

log h

-0.6
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3) Cook’s skew beam

Convergence curves (Distorted meshes)

AN

Cook’s skew beam problem (Distorted meshes)

NS-FEM

Proposed

SSE

ES-FEM
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=0.49
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0.4999
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More accurate
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A 80|
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Numerical examples

4) Dam problem

y

y

s

h

¥y Yy vy v

B
»

Force

Compressive surface force
f = 5—-y 0<y<5
ST l(=-5" 5<y<10
Boundary condition
The block is clamped along its bottom

Material property (plane strain condition)

E=3%x10", v=0.3,0.49,0.499 and 0.4999

Meshes (N x 2N elements)
N = 4, 8, 16 and 32.
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Numerical examples

4) Dam problem

= Convergence curves

NS-FEM

log E

ES-FEM
0 : 0
04 | ] 04 L
-0.8 L il -0.8 L
-1.2 L ] -1.2 L
w” 16 L ] ” -16 L
g 2
More accurate -2 | i 2L
24 L ] 24 L
2.8 L 4 2.8 L
=32 ! ! | | 32 )
1.5 -1.2 0.9 0.6 1.5
log h
_ More elements
h=1/N
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5. Conclusions & Future works




Conclusions

1. The SSE method has been applied to polygonal elements.

= To apply the SSE to the polygonal elements, piecewise linear shape functions are employed to

triangulate the elements.

= smoothed strains are assigned to the center point of the sub-quadrilaterals of the elements and a
piecewise linear strain field is conducted in elements.

= The elements showed improved convergence behaviors compared with previously developed
elements in various numerical examples.

= The elements still show improved performance even when considering various meshing techniques

of polygonal elements.

2. The treatment of volumetric locking in 3-node triangular SSE has been developed.

=  To address volumetric locking, the smoothed volumetric strains are defined on a node-wise basis.

=  Based on the volumetric strains at the nodes, the strain field within the element is constructed.
= This treatment preserves the convergence performance of the SSE even when no locking occurs.
=  When volumetric locking occurs, it shows improved convergence performance compared to general

SSE.
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The polygonal strain-smoothed elements

= Application to contact / crack problems

=  Geometry / material nonlinear analyses

The treatment of volumetric locking in 3-node triangular SSE
=  Modeling of rubberlike material / nearly incompressible flow
=  Material nonlinear analyses
=  Geometry nonlinear analyses (Large deformation)

=  Extension to 3D tetrahedral element
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Thank you for listening
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