Continuum mechanics based beam elements for linear and nonlinear analyses of multi-layer beam structures

> Hyo-Jin Kim (2020.06.09)

Contents

- 1. Introduction: Layered beam structures
- 2. Concepts of continuum beam finite elements
- 3. Development of continuum mechanics based beam finite elements
 - 3.1 Continuum mechanics based beam formulation for multi-layered beams
 - 3.2 Numerical examples 1
 - 3.3 Kinematics of helically stranded layered beam structures
 - 3.4 Continuum mechanics based beam formulation for helically stranded cable structures
 - 3.5 Numerical examples 2
- 4. Conclusions & Future works

1. Introduction

Applications of layered structures

Layered beam structures

- ✓ Capability to combine several components depending on specific design requirements
- ✓ High strength-to-weight ratio
- ✓ High durability
- ✓ High resistance

- Required design property (minimum bending radius, flexibility...)
- ✓ Cost-effective

<Laminated wood>

<Allied steel-wood>

<Carbon-epoxy laminate>

<Steel-concrete beam>

W410 x'

<Bolted steel beam>

<Airbus 787>

Applications of layered structures

Layered beam structures – helically stranded geometry

- ✓ Capability to combine several components depending on specific design requirements
- ✓ High strength-to-weight ratio
- ✓ High durability
- ✓ High resistance

- ✓ Required design property (minimum bending radius, flexibility...)
- ✓ Cost-effective

<copper electrical conductor>

<optical fiber cable>

<Automobile cable>

<Aluminum alloy conductors>

<Medical cable>

Research purpose

Research purpose

<Multi-layered beam structures>

<Multi-layered helically stranded cable structure>

Develop efficient beam finite element for multi-layered beam structures based on continuum mechanics formulation

- ✓ Model the complex multi-layered beam geometries as a single beam unit
 - Arbitrary number of layers and interlayers
 - Complex geometries and various loading/boundary conditions
 - Geometrical and material nonlinearities
 - Nonlinear load-slip relation at interlayers

2. Concepts of continuum beam finite elements

Concept of continuum beam finite elements

Classical beam

8/48

Features of continuum beam finite elements

Great modeling capability

<Complicated cross-section>

<Composite cross-section>

<Tapered geometry>

Additional displacement field

Out-of-plane displacement

- ✓ Warping mode
- ✓ Interlayer slip
- ✓ Distorted mode

Individual cross-section direction
 + rotation direction

displacement field

Features of continuum beam finite elements

3. Development of continuum mechanics based beam finite elements

3.1 Continuum mechanics based beam formulation for multi-layered beams

Interlayer connections of layered structures

Composition of layered structures

- ✓ Loss of stiffness
- More flexible behaviors
- Increase in deflections 🗸 Ir
- Increase nonlinearities

Interlayer connections

• Mechanical connectors: bolts, nails, etc.

• Adhesive connections: epoxy, wood glue, etc.

Research history of layered structures

Three fundamental failure modes at interlayers

Beam structures:

Structural element that primarily resists loads applied laterally to the beam's axis

15/48

Research distribution – Layered beam behavior

Analysis model for layered beam including interlayer slips

Most researches only can considers two- and three- layer beam. Nonlinear behavior of multi-layered beam is very rarely discussed.

Challenging issue: Nonlinear behavior of multi-layered beam structures

As the number of Layers increases

the complexity of problem increases extremely

- Composite interaction between the layers
- Interlayer behavior

+ Nonlinearities

- ✓ Nonlinear load-slip relation at interlayers
- Geometrical nonlinearity
- Material nonlinearity \checkmark
- ✓ Nonlinear convergence problem

Concept of continuum mechanics based beam formulation

Incremental nonlinear analysis

Incremental load-slip relation

 $_{0}F_{s}^{(i)} = _{0}K_{s}^{(i)}{}_{0}s^{(i)}$

where
$${}^{t+\Delta t}F_{s}^{(i)} = {}^{t}F_{s}^{(i)} + {}_{0}F_{s}^{(i)}$$
$${}^{t+\Delta t}s^{(i)} = {}^{t}s^{(i)} + {}_{0}s^{(i)}$$

 Linear load-slip

Mechanical connectors

based on experimental study

Adhesive connection

Bi-linear

cohesive model

s⁽ⁱ⁾

17/48

• Geometry interpolation

$${}^{t}\mathbf{x}^{(m)(n)} = \sum_{k=1}^{q} h_{k}(r){}^{t}\mathbf{x}_{k} + \sum_{k=1}^{q} h_{k}(r)\overline{y}_{k}^{(m)(n)\ t}\mathbf{V}_{\overline{y}}^{k} + \sum_{k=1}^{q} h_{k}(r)\overline{z}_{k}^{(m)(n)\ t}\mathbf{V}_{\overline{z}}^{k} + \sum_{k=1}^{q} h_{k}(r){}^{t}\varphi_{k}^{(n)\ t}\mathbf{V}_{s}^{k}$$

$$(1)$$

Geometry interpolation

$${}^{t}\mathbf{x}^{(m)(n)} = \sum_{k=1}^{q} h_{k}(r){}^{t}\mathbf{x}_{k} + \sum_{k=1}^{q} h_{k}(r)\overline{y}_{k}^{(m)(n) t}\mathbf{V}_{\overline{y}}^{k} + \sum_{k=1}^{q} h_{k}(r)\overline{z}_{k}^{(m)(n) t}\mathbf{V}_{\overline{z}}^{k} + \sum_{k=1}^{q} h_{k}(r){}^{t}\varphi_{k}^{(n) t}\mathbf{V}_{s}^{k}$$

$$(3)$$

Incremental displacement

• Geometry interpolation

$${}^{t}\mathbf{x}^{(m)(n)} = \sum_{k=1}^{q} h_{k}(r){}^{t}\mathbf{x}_{k} + \sum_{k=1}^{q} h_{k}(r)\overline{y}_{k}^{(m)(n) t}\mathbf{V}_{\overline{y}}^{k} + \sum_{k=1}^{q} h_{k}(r)\overline{z}_{k}^{(m)(n) t}\mathbf{V}_{\overline{z}}^{k} + \sum_{k=1}^{q} h_{k}(r){}^{t}\varphi_{k}^{(n) t}\mathbf{V}_{s}^{k}$$

• Linearized incremental displacement

$${}_{0}\mathbf{u}^{(m)(n)} \approx \sum_{k=1}^{q} h_{k}(r)_{0}\mathbf{u}_{k} + \sum_{k=1}^{q} h_{k}(r)\overline{y}_{k}^{(m)(n)}\hat{\mathbf{R}}(_{0}\mathbf{\theta}^{k})^{T}\mathbf{V}_{\overline{y}}^{k} + \sum_{k=1}^{q} h_{k}(r)\overline{z}_{k}^{(m)(n)}\hat{\mathbf{R}}(_{0}\mathbf{\theta}^{k})^{T}\mathbf{V}_{\overline{z}}^{k} + \sum_{k=1}^{q} h_{k}(r)(_{0}\varphi_{k}^{(n)} \cdot \mathbf{V}_{s}^{k} + ({}^{t}\varphi_{k}^{(n)} + _{0}\varphi_{k}^{(n)})(\frac{1}{\|{}^{T}\mathbf{g}_{x}^{k}\|}\sum_{\xi=1}^{q} h_{\xi}'(r)_{0}\mathbf{u}_{\xi}))$$

$$= \left[\mathbf{L}_{1}^{(m)(n)} \mathbf{L}_{2}^{(m)(n)} \cdots \mathbf{L}_{q}^{(m)(n)}\right]_{0}\mathbf{U} = \mathbf{L}^{(m)(n)}_{0}\mathbf{U}$$
where nodal DOFs vector
$$\begin{bmatrix} \mathbf{U}_{1}^{(m)(n)} \cdot \mathbf{U}_{2}^{(m)(n)} \cdot \mathbf{U}_{q}^{(n)} \end{bmatrix}_{0}^{T} \mathbf{U} = \mathbf{U}_{1}^{(m)(n)}_{0}\mathbf{U}$$

$$\begin{bmatrix} \mathbf{U}_{1}^{(m)} \cdot \mathbf{U}_{2}^{T} \cdots \mathbf{U}_{q}^{T} \end{bmatrix}_{0}^{T} \mathbf{U}$$

$$\begin{bmatrix} \mathbf{U}_{1}^{(m)(n)} \cdot \mathbf{U}_{2}^{T} \cdots \mathbf{U}_{q}^{T} \end{bmatrix}_{0}^{T} \mathbf{U} = \mathbf{U}_{1}^{(m)(n)}_{0}\mathbf{U}_{1}^{T} \cdots \mathbf{U}_{q}^{T} \end{bmatrix}_{0}^{T} \mathbf{U} = \begin{bmatrix} \mathbf{U}_{1}^{(m)(n)} \cdot \mathbf{U}_{q}^{T} \cdots \mathbf{U}_{q}^{T} \end{bmatrix}_{0}^{T} \mathbf{U}$$

$$\begin{bmatrix} \mathbf{U}_{1}^{(m)(n)} \cdot \mathbf{U}_{2}^{(m)(n)} \cdot \mathbf{U}_{q}^{T} \cdots \mathbf{U}_{q}^{T} \end{bmatrix}_{0}^{T} \mathbf{U} = \begin{bmatrix} \mathbf{U}_{1}^{(m)(n)} \cdot \mathbf{U}_{1}^{T} \cdots \mathbf{U}_{q}^{T} \end{bmatrix}_{0}^{T} \mathbf{U} = \begin{bmatrix} \mathbf{U}_{1}^{(m)(n)} \cdot \mathbf{U}_{1}^{T} \cdots \mathbf{U}_{q}^{T} \end{bmatrix}_{0}^{T} \mathbf{U} = \begin{bmatrix} \mathbf{U}_{1}^{(m)(n)} \cdot \mathbf{U}_{1}^{T} \cdots \mathbf{U}_{q}^{T} \end{bmatrix}_{0}^{T} \mathbf{U} = \begin{bmatrix} \mathbf{U}_{1}^{(m)(n)} \cdot \mathbf{U}_{1}^{T} \cdots \mathbf{U}_{q}^{T} \end{bmatrix}_{0}^{T} \mathbf{U} = \begin{bmatrix} \mathbf{U}_{1}^{(m)(n)} \cdot \mathbf{U}_{1}^{T} \cdots \mathbf{U}_{q}^{T} \end{bmatrix}_{0}^{T} \mathbf{U} = \begin{bmatrix} \mathbf{U}_{1}^{(m)(n)} \cdot \mathbf{U}_{1}^{T} \cdots \mathbf{U}_{q}^{T} \cdots \mathbf{U}_{q}^{T} \end{bmatrix}_{0}^{T} \mathbf{U} = \begin{bmatrix} \mathbf{U}_{1}^{(m)(n)} \cdot \mathbf{U}_{1}^{T} \cdots \mathbf{U}_{q}^{T} \end{bmatrix}_{0}^{T} \mathbf{U} = \begin{bmatrix} \mathbf{U}_{1}^{(m)(n)} \cdot \mathbf{U}_{1}^{T} \cdots \mathbf{U}_{q}^{T} \end{bmatrix}_{0}^{T} \mathbf{U} = \begin{bmatrix} \mathbf{U}_{1}^{(m)(n)} \cdot \mathbf{U}_{1}^{T} \cdots \mathbf{U}_{q}^{T} \end{bmatrix}_{0}^{T} \mathbf{U} = \begin{bmatrix} \mathbf{U}_{1}^{(m)(n)} \cdot \mathbf{U}_{1}^{T} \cdots \mathbf{U}_{q}^{T} \cdots \mathbf{U}_{q}^{T} \end{bmatrix}_{0}^{T} \mathbf{U} = \begin{bmatrix} \mathbf{U}_{1}^{(m)(n)} \cdot \mathbf{U}_{1}^{T} \cdots \mathbf{U}_{q}^{T} \cdots \mathbf{U}_{q}^{T} \end{bmatrix}_{0}^{T} \mathbf{U} = \begin{bmatrix} \mathbf{U}_{1}^{(m)(n)} \cdot \mathbf{U}_{1}^{T} \cdots \mathbf{U}_{q}^{T} \cdots \mathbf{U}_{q}^{T} \end{bmatrix}_{0}^{T} \mathbf{U} = \begin{bmatrix} \mathbf{U}_{1}^{(m)(n)} \cdot \mathbf{U}_{1}^{T} \cdots \mathbf{U}_{q}^{T} \cdots \mathbf{U}_{q}^{T} \end{bmatrix}_{0}^{T} \mathbf{U} = \begin{bmatrix} \mathbf{U}_{1}^{(m)(n)} \cdot \mathbf{U}_{1}^{T} \mathbf{U} + \begin{bmatrix} \mathbf{U}_{1}^{(m)(n)} \cdot \mathbf{U}_{1}^{T} \mathbf{U} + \begin{bmatrix} \mathbf{U}_{1}^{(m)(n)} \cdot \mathbf{U}_{1}^{T} \cdots \mathbf{U}_{q}^{T} \cdots \mathbf{U}_{q}^{T} \mathbf{U$$

$$+\sum_{i}\int_{0}^{L}K_{s}^{(i)} u_{s}^{(i)}\delta_{0}u_{s}^{(i)}d^{0}L = {}^{t+\Delta t}\Re - \sum_{n}\sum_{m}\int_{0}^{L}\int_{V}^{(m)(n)} {}^{t}\overline{S}_{ij}^{(m)(n)}\delta_{0}\overline{e}_{ij}^{(m)(n)}d^{0}V^{(m)(n)} - \sum_{i}\int_{0}^{L}{}^{t}F_{s}^{(i)}\delta_{0}u_{s}^{(i)}d^{0}L$$

Constitutive For the layers: ${}_{0}S_{ij}^{(m)(n)} = \overline{C}_{ijkl}^{(m)(n)} {}_{0}\overline{e}_{kl}^{(m)(n)}$ For *i* th interlayers: ${}_{0}F_{s}^{(i)} = {}_{0}K_{s}^{(i)} {}_{0}u_{s}^{(i)}$

21/48

3.2 Numerical examples 1

23/48

Numerical examples

(c)

(d)

 $\tau^0 = 100 \text{ MPa}$ $G_{\mu c} = 1.719 \text{ kJ/m}^2$

SÍ S

K(1-d)

0 4

2

w (m) at x = L/2

3

4

5 ×10⁻³

- Seven-layer beam under transverse and axial load
 - Problem description

Numerical results

- Beam model: 20 continuum mechanics based beam elements (147 DOFs)
- Solid model : 32,800 8-node and 27-node solid elements (318,138 DOFs and 878,134 DOFs)

✓ Geometrical nonlinear behavior of multi-layer beam

25/48

3.3 Helically stranded cable structures

Helical cable structures

<Sub-marine power cable>

- Resist large tension but flexible
 - ✓ Resist large axial load

✓ Flexible (small bending rigidity)

Main design criterion

- ✓ Resist large axial load
- Low bending rigidity
 (MBR: minimum bending radius)
- ✓ Cost-effective
- ✓ High durability, High resistance

<winded electric cable>

<winded subsea cable>

Inter-wire connections

Minimum inter-wire connection \rightarrow Minimum bending radius (MBR, ρ)

M_b MIK M_b ✓ Frictionless M_t P ✓ No Touching **Cross-sectional** Local wire behaviors direction vector (Director) Inter-wire slips Cable rotation + Local wire rotations in longitudinal direction

Inter-wire

Basic geometry of helically stranded cables

Research History

Analytical models

- Hruska (1951) : The simplest model ignoring the wire bending and torsion effect.
- Thin rod theory (Love), McConnell and Zemek, Machida and Durelli, Knapp models...
- Costello (1997): The linearized theories including the curvature and twist variations for each wire in cables.

Numerical models

- Full solid model
- Beam to beam model (Wire-wise beam model)
- Mixed model (Beam + Solid)
- Simplified model (for only cross-sectional analysis)

Concise (part) model

Ring model

Research purpose

- Research purpose
 - Solid model

Beam to beam model

• Continuum beam model

For a 1-Layer (7-wires), Lay angle=18 dgr, 2-Pitch length model

Full solid model	Beam to beam model	Continuum beam mode
(96,556 elements, 343,104 DOFs)	(1,099 elements, 6,636 DOFs)	(40 element, 615 DOFs)

Develop continuum beam finite elements for accurate and efficient analysis of helically stranded cable structures

3.4 Continuum mechanics based beam formulation for helically stranded beam structures

Basic kinematics of helical beam structures

35/48

Continuum mechanics based beam formulation

$$\begin{bmatrix} {}^{t}\mathbf{x}_{k}^{(m)(n)} \\ 1 \end{bmatrix} = \begin{bmatrix} \begin{bmatrix} \mathbf{I} \end{bmatrix} {}^{t}\mathbf{x}_{k} \\ 0 & 1 \end{bmatrix} \begin{bmatrix} {}^{t}\begin{bmatrix} {}^{0}\mathbf{T}_{1(k)} \end{bmatrix} {}^{0}\mathbf{0} \\ 0 & 1 \end{bmatrix} \begin{bmatrix} \mathbf{I} \end{bmatrix} {}^{\mathbf{x}_{k}^{(m)(n)}} \\ 0 & 1 \end{bmatrix} \begin{bmatrix} {}^{t}\begin{bmatrix} {}^{1(k)}\mathbf{T}_{2(k)(m)} \end{bmatrix} {}^{0}\mathbf{0} \\ 0 & 1 \end{bmatrix} \begin{bmatrix} {}^{t}\varphi_{k}^{(m)(n)} {}^{t}\overline{\mathbf{V}}_{s} \\ 1 \end{bmatrix}$$
$${}^{t}\mathbf{x}^{(m)(n)} = \sum_{k=1}^{q}h_{k}(r) \left\langle {}^{t}\mathbf{x}_{k}^{(m)(n)} \right\rangle = \sum_{k=1}^{q}h_{k}(r) \left\langle {}^{t}\mathbf{x}_{k} + {}^{t}\begin{bmatrix} {}^{0}\mathbf{T}_{1(k)} \end{bmatrix} \tilde{\mathbf{x}}_{k}^{(m)(n)} + {}^{t}\begin{bmatrix} {}^{0}\mathbf{T}_{1(k)} \end{bmatrix} {}^{t}\mathbf{\overline{Y}}_{k}^{(m)(n)} + {}^{t}\begin{bmatrix} {}^{0}\mathbf{T}_{1(k)} \end{bmatrix} {}^{t}\mathbf{\overline{X}}_{k}^{(m)(n)} + {}^{t}\varphi_{k}^{(m)(n)} {}^{t}\begin{bmatrix} {}^{0}\mathbf{T}_{1(k)} \end{bmatrix} {}^{t}\mathbf{\overline{Y}}_{s}^{k} \right\rangle$$

where
$${}^{t} \begin{bmatrix} {}^{0}\mathbf{T}_{1(k)} \end{bmatrix} = \begin{bmatrix} {}^{t}\mathbf{V}^{k} \end{bmatrix} = \begin{bmatrix} {}^{t}\mathbf{V}^{k}_{x} & {}^{t}\mathbf{V}^{k}_{y} & {}^{t}\mathbf{V}^{k}_{z} \end{bmatrix}$$

 ${}^{t} \begin{bmatrix} {}^{0}\mathbf{T}_{1(k)} \end{bmatrix} {}^{t} \begin{bmatrix} {}^{1}\mathbf{T}_{2(k)(m)} \end{bmatrix} = \begin{bmatrix} {}^{t}\mathbf{V}^{k} \end{bmatrix} \begin{bmatrix} {}^{t}\tilde{\mathbf{n}}^{k(m)(n)} \end{bmatrix} = \begin{bmatrix} {}^{t}\mathbf{n}^{k(m)(n)} \end{bmatrix} = \begin{bmatrix} {}^{t}\mathbf{n}^{k(m)(n)} & {}^{t}\mathbf{n}^{k(m)(n)} & {}^{t}\mathbf{n}^{k(m)(n)} \end{bmatrix}$

$$\begin{bmatrix} t^{+\Delta t} \mathbf{x}_{k}^{(m)(n)} \\ 1 \end{bmatrix} = \begin{bmatrix} \begin{bmatrix} \mathbf{I} \end{bmatrix} & t^{+\Delta t} \mathbf{x}_{k} \\ \mathbf{0} & 1 \end{bmatrix} \begin{bmatrix} ^{T} \begin{bmatrix} \mathbf{0} \mathbf{T}_{1(k)} \end{bmatrix} & \mathbf{0} \\ \mathbf{0} & 1 \end{bmatrix} \begin{bmatrix} \mathbf{R} \begin{pmatrix} \mathbf{0} \mathbf{\theta}_{k}^{k} \end{pmatrix} & \mathbf{0} \\ \mathbf{0} & 1 \end{bmatrix} \begin{bmatrix} \mathbf{I} \end{bmatrix} & \mathbf{x}_{k}^{(m)(n)} \end{bmatrix} \begin{bmatrix} \mathbf{I} \end{bmatrix} & \mathbf{x}_{k}^{(m)(n)} \\ \mathbf{0} & 1 \end{bmatrix} \begin{bmatrix} t^{+\Delta t} \mathbf{x}_{k}^{(m)(n)} \end{bmatrix} \\ \mathbf{1} \end{bmatrix} \begin{bmatrix} t^{+\Delta t} \mathbf{x}_{k}^{(m)(n)} \end{bmatrix} = \sum_{k=1}^{q} h_{k}(r) \left\langle t^{+\Delta t} \mathbf{x}_{k} + t^{t} \begin{bmatrix} \mathbf{0} \mathbf{T}_{1(k)} \end{bmatrix} \mathbf{R} \begin{pmatrix} \mathbf{0} \mathbf{\theta}_{k}^{k} \end{pmatrix} \mathbf{x}_{k}^{(m)(n)} + t^{t} \begin{bmatrix} \mathbf{0} \mathbf{T}_{1(k)} \end{bmatrix} \mathbf{R} \begin{pmatrix} \mathbf{0} \mathbf{\theta}_{k}^{k} \end{pmatrix} \mathbf{x}_{k}^{(m)(n)} + t^{t} \begin{bmatrix} \mathbf{0} \mathbf{T}_{1(k)} \end{bmatrix} \mathbf{R} \begin{pmatrix} \mathbf{0} \mathbf{\theta}_{k}^{k} \end{pmatrix} \mathbf{x}_{k}^{(m)(n)} + t^{t+\Delta t} \varphi_{k}^{(m)(n)} t^{+\Delta t} \mathbf{x}_{k} \\ \mathbf{1} \end{bmatrix} \begin{bmatrix} \mathbf{1} & \mathbf{x}_{k}^{(m)(n)} \end{bmatrix} \mathbf{R} \begin{pmatrix} \mathbf{0} \mathbf{\theta}_{k}^{k} \end{pmatrix} \mathbf{x}_{k}^{(m)(n)} \mathbf{x}_{k}^{(m)(n)} + t^{t+\Delta t} \varphi_{k}^{(m)(n)} t^{+\Delta t} \mathbf{x}_{k} \\ \mathbf{1} \end{bmatrix} \mathbf{x}_{k}^{(m)(n)} = \sum_{k=1}^{q} h_{k}(r) \left\langle t^{+\Delta t} \mathbf{x}_{k} + t^{t} \begin{bmatrix} \mathbf{0} \mathbf{T}_{1(k)} \end{bmatrix} \mathbf{R} \begin{pmatrix} \mathbf{0} \mathbf{\theta}_{k}^{k} \end{pmatrix} \mathbf{x}_{k}^{(m)(n)} + t^{t+\Delta t} \varphi_{k}^{(m)(n)} t^{+\Delta t} \mathbf{x}_{k} \\ \mathbf{R} \begin{pmatrix} \mathbf{0} \mathbf{\theta}_{k}^{k} \end{pmatrix} = t^{t} \begin{bmatrix} \mathbf{0} \mathbf{T}_{1(k)} \end{bmatrix} \mathbf{R} \begin{pmatrix} \mathbf{0} \mathbf{\theta}_{k}^{k} \end{pmatrix}^{t} \begin{bmatrix} \mathbf{0} \mathbf{T}_{1(k)} \end{bmatrix}^{T} \\ \mathbf{1} \end{bmatrix} \mathbf{x}_{k}^{(m)(n)} t^{+\Delta t} \mathbf{x}_{k} \\ \mathbf{R} \begin{pmatrix} \mathbf{0} \mathbf{\theta}_{k}^{k} \end{pmatrix}^{t} \begin{bmatrix} \mathbf{0} \mathbf{T}_{1(k)} \end{bmatrix}^{T} \begin{bmatrix} \mathbf{0} \mathbf{T}_{1(k)} \end{bmatrix}^{T} \\ \mathbf{1} \end{bmatrix} \mathbf{x}_{k}^{(m)(n)} t^{+\Delta t} \mathbf{x}_{k} \\ \mathbf{R} \begin{pmatrix} \mathbf{0} \mathbf{\theta}_{k}^{k} \end{pmatrix}^{t} \begin{bmatrix} \mathbf{0} \mathbf{T}_{1(k)} \end{bmatrix}^{T} \\ \mathbf{1} \end{bmatrix} \mathbf{R} \begin{pmatrix} \mathbf{0} \mathbf{\theta}_{k}^{k} \end{pmatrix}^{t} \begin{bmatrix} \mathbf{0} \mathbf{T}_{1(k)} \end{bmatrix}^{T} \\ \mathbf{1} \end{bmatrix} \mathbf{x}_{k}^{(m)(n)} t^{+\Delta t} \mathbf{x}_{k} \\ \mathbf{1} \end{bmatrix} \mathbf{1} \\ \mathbf{1} \end{bmatrix} \mathbf{1} \\ \mathbf{1} \end{bmatrix} \mathbf{1} \begin{bmatrix} \mathbf{1} \mathbf{1} \mathbf{1} \\ \mathbf{1} \end{bmatrix} \mathbf{1} \\ \mathbf{1} \end{bmatrix} \mathbf{1} \begin{bmatrix} \mathbf{1} \mathbf{1} \mathbf{1} \\ \mathbf{1} \end{bmatrix} \mathbf{1} \begin{bmatrix} \mathbf{1} \mathbf{1} \mathbf{1} \\ \mathbf{1} \end{bmatrix} \mathbf{1} \\ \mathbf{1} \end{bmatrix} \mathbf{1} \\ \mathbf{1} \end{bmatrix} \mathbf{1} \begin{bmatrix} \mathbf{1} \mathbf{1} \mathbf{1} \\ \mathbf{1} \end{bmatrix} \mathbf{1} \\ \mathbf{1}$$

Incremental displacement

• Geometry interpolation

$${}^{t+\Delta t}\mathbf{x}^{(m)(n)} = \sum_{k=1}^{q} h_{k}(r) \Big\langle {}^{t+\Delta t}\mathbf{x}_{k} + \mathbf{R}({}_{0}\mathbf{\theta}_{c}^{k}) \Big[{}^{t}\mathbf{V}^{k}\Big] \mathbf{\tilde{x}}_{k}^{(m)(n)} + \mathbf{R}({}_{0}\mathbf{\theta}_{c}^{k}) \Big[{}^{t}\mathbf{V}^{k}\Big] \Big[{}^{t}\mathbf{\tilde{n}}^{k(m)(n)}\Big] \mathbf{R}({}_{0}\mathbf{\overline{\theta}}_{w}^{k(n)}) \mathbf{\overline{x}}_{k}^{(m)(n)} + {}^{t+\Delta t}\varphi_{k}^{(m)(n)} t + \Delta t \mathbf{V}_{s}^{k} \Big\rangle$$

• Linearized incremental displacement

$${}_{0}\mathbf{u}^{(m)(n)} = {}^{t+\Delta t}\mathbf{x}^{(m)(n)} - {}^{t}\mathbf{x}^{(m)(n)} =$$

$$= \sum_{k=1}^{q} h_{k}(r) \left\langle \left({}_{0}\mathbf{u}_{k} \right) + \hat{\mathbf{R}} \left({}_{0}\boldsymbol{\theta}_{c}^{k} \right) \left[{}^{t}\mathbf{V}^{k} \right] \tilde{\mathbf{x}}_{k}^{(m)(n)} + \hat{\mathbf{R}} \left({}_{0}\boldsymbol{\theta}_{c}^{k} \right) \left[{}^{t}\mathbf{n}^{k(m)(n)} \right] \bar{\mathbf{x}}_{k}^{(m)(n)} \right] \bar{\mathbf{x}}_{k}^{(m)(n)} + \left[{}^{t}\mathbf{n}^{k(m)(n)} \right] \hat{\mathbf{R}} \left({}_{0}\boldsymbol{\theta}_{w}^{k(n)} \right) \bar{\mathbf{x}}_{k}^{(m)(n)} + \hat{\mathbf{R}} \left({}_{0}\boldsymbol{\theta}_{w}^{k(n)} \right) \bar{\mathbf{x}}_{k}^{(m)(n)} \right] \hat{\mathbf{R}} \left({}_{0}\boldsymbol{\theta}_{w}^{k(n)} \right) \bar{\mathbf{x}}_{k}^{(m)(n)} \left[\hat{\mathbf{R}} \left({}_{0}\boldsymbol{\theta}_{w}^{k(n)} \right) \bar{\mathbf{x}}_{k}^{(m)(n)} \right] \hat{\mathbf{R}} \left({}_{0}\boldsymbol{\theta}_{w}^{k(n)} \right) \bar{\mathbf{x}}_{k}^{(m)(n)} \right] \hat{\mathbf{R}} \left({}_{0}\boldsymbol{\theta}_{w}^{k(n)} \right) \bar{\mathbf{x}}_{k}^{(m)(n)} \left[\hat{\mathbf{R}} \left({}_{0}\boldsymbol{\theta}_{w}^{k(n)} \right) \bar{\mathbf{x}}_{k}^{(m)(n)} \right] \hat{\mathbf{R}} \left({}_{0}\boldsymbol{\theta}_{w}^{k(n)} \right) \bar{\mathbf{x}}_{k}^{(m)(n)} + \hat{\mathbf{R}} \left({}_{0}\boldsymbol{\theta}_{w}^{k(n)} \right) \bar{\mathbf{x}}_{k}^{(m)(n)} \hat{\mathbf{R}} \left({}_{0}\boldsymbol{\theta}_{w}^{k(n)$$

• Nodal DOFs $(= 6 + 3n_L + n_w)$ n_L : number of layers, n_w : number of wires

$${}_{0}\mathbf{U}_{k} = \begin{bmatrix} {}_{0}\mathbf{u}_{k} & {}_{0}\mathbf{\theta}_{c}^{k} & {}_{0}\mathbf{\theta}_{w}^{k(1)} & \dots & {}_{0}\mathbf{\theta}_{w}^{k(n_{L})} & {}_{0}\mathbf{\phi}_{k} \end{bmatrix}^{\mathrm{T}} \text{ where } \begin{bmatrix} {}_{0}\mathbf{u}_{k} & {}_{0}\mathbf{v}_{k} & {}_{0}\mathbf{w}_{k} \end{bmatrix}^{\mathrm{T}} & {}_{0}\mathbf{\theta}_{w}^{k(n)} = \begin{bmatrix} {}_{0}\theta_{wx}^{k} & {}_{0}\theta_{wy}^{k} & {}_{0}\theta_{wz}^{k} \end{bmatrix}^{\mathrm{T}} \\ {}_{0}\mathbf{\theta}_{c}^{k} = \begin{bmatrix} {}_{0}\theta_{cx}^{k} & {}_{0}\theta_{cy}^{k} & {}_{0}\theta_{cz}^{k} \end{bmatrix}^{\mathrm{T}} & {}_{0}\mathbf{\phi}_{k} = \begin{bmatrix} {}_{0}\varphi_{k}^{(1)} & \dots & {}_{0}\varphi_{k}^{(n_{w})} \end{bmatrix}^{\mathrm{T}} \end{bmatrix}^{\mathrm{T}}$$

Finite element formulation

• Total Lagrangian formulation (for *l*-layer cable, n = 0...l)

$$\sum_{n} \sum_{m} \int_{{}^{0}V^{(m)(n)}} \overline{C}_{ijkl}^{(m)(n)} \,_{0}\overline{e}_{ij}^{(m)(n)} \delta_{0}\overline{e}_{kl}^{(m)(n)} d^{0}V^{(m)(n)} + \sum_{n} \sum_{m} \int_{{}^{0}V^{(m)(n)}} {}^{t}_{0}\overline{S}_{ij}^{(m)(n)} \delta_{0}\overline{\eta}_{ij}^{(m)(n)} d^{0}V^{(m)(n)}$$
$$= {}^{t+\Delta t} \Re - \sum_{n} \sum_{m} \int_{{}^{0}V^{(m)(n)}} {}^{t}_{0}\overline{S}_{ij}^{(m)(n)} \delta_{0}\overline{e}_{ij}^{(m)(n)} d^{0}V^{(m)(n)} \quad * \text{ Frictionless condition between inter-wires}$$

39/48

7. Numerical examples 2

Tip Displacement u

7-wire cantilever cable – cross-sectional discretization test

Benchmark problem1: Comparison with experimental test

• Beam model: 20 elements, <u>483 DOFs (23 DOFs per node) (<1 min)</u>

• 8-node solids model: 2,520,000 elements 8,393,760 DOFs

Fig. 3. The FE model of 120-wire spiral strand cable.

(Bridon International Ltd)

45/48

7. Conclusions & Future works

Conclusions & Future works

- Continuum mechanics based beam elements for <u>multi-layered beams</u>
 - ✓ Develop a new beam finite element for **multi-layered beams**
 - Arbitrary number of layers and interlayers can be modeled as a single beam
 - Complex geometries and boundary conditions
 - Geometrical and material nonlinear behavior
 - Nonlinear load-slip relation at interlayers

More general interlayer behaviors

(Opening mode)

(out-of-plane mode)

• Other multi-layered structures

<Multi-layer pipe structure>

Conclusions & Future works

- Continuum mechanics based beam elements for <u>helically stranded cables</u>
 - ✓ Develop a new beam finite element for **helically stranded cables**
 - Arbitrary number of layers and wires can be modeled as a single beam
 - Complex geometries and boundary conditions
 - Geometrical and material nonlinear behavior
 - Simple modeling procedure & Low computational cost

- More general helical geometries
- Friction, contact effect

 Bird-caging (un-winding)

/48

Appendix