Ph.D. dissertation presentation

2D-MITC4 솔리드 및 MITC4+ 쉘 유한요소의 개선

Improvement of 2D-MITC4 solid and MITC4+ shell finite elements

최 형 규(Hyung-Gyu Choi)

2022.12.08

Department of Mechanical Engineering

1 / Introduction

2 / New 2D-MITC4 solid element

3 / New MITC4+ shell element

4 / Conclusions & future works

1. Introduction

Finite element method

FEM in various engineering fields

Aerospace engineering

Automotive engineering

Digital twin

Structural health monitoring

ttps://altairhyperworks.com/industry/ https://zhuanlan.zhihu.com/p/20465355

http://www.lminnomaritime.com/application-of-fem-on-ships-structural-design

ttps://www.hartenergy.com/exclusives/ep-solutions-reduce-costly-regrets-through-ai-powered-digital-twins-188772

Finite element method

Distorted mesh

Perforated panel (hole)

http://members.ozemail.com.au/~comecau http://www.centaursoft.com/structured-surface-mesh

Aircraft wing (curved geometry)

Performance deterioration

Research purpose

- Improvement of the performance on distorted mesh
- ✓ Simplification of the formulation

Topic 1. new 2D-MITC4 solid element

- Simplification of the previous formulation
- Adjustment of Gauss points considering element distortion

Topic 2. new MITC4+ shell element

- New assumed membrane strain field
- Extension of the concept of "geometry dependent Gauss integration"

Topic 1

New 2D-MITC4 solid element

4-node quadrilateral 2D solid element

Research motivations

Development of a new finite element

Major considerations

- Basic tests (patch, zero energy mode, and isotropy tests)
- Treatment of locking phenomena
- Reliable and accurate solution

Related studies

- Reduced integration
 - Zienkiewicz et al. (1971)
 - Reduced integration technique
 - Spurious zero energy modes problem
 - Malkus and Huges (1978)
 - Selective integration technique
 - Spatially isotropy problem
- Incompatible modes (EAS)
 - Wilson et al. (1973) / Taylor et al. (1976)
 - Modified incompatible modes element which passes the patch test
 - One of the most-widely used elements in commercial software
 - Sussman and Bathe (2014)
 - Numerical instabilities of incompatible modes element
- Assumed strain method
 - Dvorkin and Bathe (1984)
 - Mixed interpolation of tensorial components(MITC) method
 - Improved performance by alleviating locking phenomena
 - Ko et al. (2017) → 2D-MITC4
 - Alleviation of in-plane shear locking using MITC method
 - Superior convergence behavior in regular meshes
 - No spurious zero energy modes in nonlinear analysis

Research motivations

Performance deterioration in distorted mesh

 ✓ To use in engineering practice, we need to improve the performance of the 2D-MITC4 element in 'distorted mesh'.

Related studies

- Investigation of accuracy loss in distorted mesh
 - Harder and MacNeal (1985) / MacNeal (1989)
 Accuracy of finite elements with nonstandard shape
 - Lee and Bathe (1993)
 - Effects of element distortion on the performance
- Improvement of performance in distorted mesh
 - Celia and Gray (1984) / Wisniewski and Turska (2018)
 - Corrected shape functions (high-order element)
 - Sze (2000)
 - Alleviation of trapezoidal locking
- Meshing techniques
 - Kendhe et al. (2005) / Peto et al. (2020)
 - Structured mesh generation
 - Employing background imaginary grid

Structured mesh

Conformal decomposition with Cartesian grid

Conventional

Unfitted mesh with fictitious domain

Previous 2D-MITC4 solid element

Geometry and displacement interpolations

-
$$\mathbf{x} = \sum_{i=1}^{4} h_i(r,s) \mathbf{x}_i$$
 with $\mathbf{x}_i = \begin{bmatrix} x_i & y_i \end{bmatrix}^{\mathrm{T}}$

-
$$\mathbf{u} = \sum_{i=1}^{4} h_i(r,s) \mathbf{u}_i$$
 with $\mathbf{u}_i = \begin{bmatrix} u_i & v_i \end{bmatrix}^{\mathrm{T}}$.

- Shape functions:
$$h_i = \frac{1}{4}(1 + \xi_i r)(1 + \eta_i s)$$

with

$$\begin{bmatrix} \xi_1 & \xi_2 & \xi_3 & \xi_4 \end{bmatrix} = \begin{bmatrix} 1 & -1 & -1 & 1 \end{bmatrix}$$
$$\begin{bmatrix} \eta_1 & \eta_2 & \eta_3 & \eta_4 \end{bmatrix} = \begin{bmatrix} 1 & 1 & -1 & -1 \end{bmatrix}$$

A 4-node quadrilateral 2D solid element

Global Cartesian coordinate

Natural coordinate

Strain components

-
$$e_{ij} = \frac{1}{2} (\mathbf{g}_i \cdot \mathbf{u}_{j} + \mathbf{g}_j \cdot \mathbf{u}_{j})$$
 with $i, j = 1, 2$

where
$$\mathbf{g}_i = \frac{\partial \mathbf{x}}{\partial r_i}$$
, $\mathbf{u}_{,i} = \frac{\partial \mathbf{u}}{\partial r_i}$ with $r_1 = r$, $r_2 = s$

2D-MITC4 element has constant base vectors.

$$\hat{e}_{ij} = e_{kl}g_i^kg_j^l$$
 with $g_i^j = \hat{\mathbf{g}}_i \cdot \mathbf{g}^j$ and $\hat{\mathbf{g}}_i = \mathbf{g}_i(0,0)$

Previous 2D-MITC4 solid element

Assumed strain field for the 2D-MITC4 element

$$\hat{e}_{rr} = \hat{e}_{rr}^{(E)} + \frac{\sqrt{3}}{2} (\hat{e}_{rr}^{(A)} - \hat{e}_{rr}^{(B)}) \lambda(r, s)s$$

$$\hat{e}_{ss} = \hat{e}_{ss}^{(E)} + \frac{\sqrt{3}}{2} (\hat{e}_{ss}^{(C)} - \hat{e}_{ss}^{(D)}) \lambda(r, s)r$$

$$\hat{e}_{rs} = \hat{e}_{rs}^{(E)} \quad \text{with} \quad \lambda(r, s) = \frac{\det(\mathbf{J}(0, 0))}{\det(\mathbf{J}(r, s))}$$

$$To reduce the computational cost$$

$$Procedu$$
1. Sampling

- $e_{rr} = e_{rr}|_{con} + \frac{e_{rr}}{\lambda(r,s)s}$
- $\hat{e}_{ss} = e_{ss}\Big|_{con} + \frac{\hat{e}_{ss}^{lin}}{\hat{e}_{ss}}\lambda(r,s)r$
- $\widehat{e}_{rs} = e_{rs} \Big|_{con}$

3. Representation using strain coefficients: $\hat{e}_{ij}^{(\cdot)} \rightarrow e_{ij}$

Procedure

Previous 2D-MITC4 solid element

Characteristic geometry and displacement vectors

-
$$\mathbf{x}_r = \frac{1}{4} \sum_{i=1}^{4} \xi_i \mathbf{x}_i, \quad \mathbf{x}_s = \frac{1}{4} \sum_{i=1}^{4} \eta_i \mathbf{x}_i, \quad \mathbf{x}_d = \frac{1}{4} \sum_{i=1}^{4} \xi_i \eta_i \mathbf{x}_i$$

-
$$\mathbf{u}_r = \frac{1}{4} \sum_{i=1}^{4} \xi_i \mathbf{u}_i$$
, $\mathbf{u}_s = \frac{1}{4} \sum_{i=1}^{4} \eta_i \mathbf{u}_i$, $\mathbf{u}_d = \frac{1}{4} \sum_{i=1}^{4} \xi_i \eta_i \mathbf{u}_i$

Characteristic geometry vectors

X

x, ·u,

 $\mathbf{X}_d \cdot \mathbf{u}_d$

X,

Strain coefficients

- $e_{rr}\Big|_{con} = \mathbf{x}_r \cdot \mathbf{u}_r$, $e_{rr}\Big|_{lin} = \mathbf{x}_r \cdot \mathbf{u}_d + \mathbf{x}_d \cdot \mathbf{u}_r$

-
$$e_{ss}|_{con} = \mathbf{x}_s \cdot \mathbf{u}_s$$
, $e_{ss}|_{lin} = \mathbf{x}_s \cdot \mathbf{u}_d + \mathbf{x}_d \cdot \mathbf{u}_s$

-
$$e_{rs}\Big|_{con} = \frac{1}{2} \left(\mathbf{x}_r \cdot \mathbf{u}_s + \mathbf{x}_s \cdot \mathbf{u}_r \right) , \ e_{rs}\Big|_{bil} = \mathbf{x}_d \cdot \mathbf{u}_d$$

 $\mathbf{X}_{s} \cdot \mathbf{u}_{s}$

 $\mathbf{X}_d \cdot \mathbf{u}_d$

14/62

Simplified formulation

Previous formulation

$$\hat{e}_{rr}^{lin} = \frac{n_1}{\sqrt{3}} e_{rs} \Big|_{bil} + \sqrt{3}n_1 e_{rr} \Big|_{con} + \sqrt{3}n_2 e_{ss} \Big|_{con} + n_3 e_{rr} \Big|_{lin} + n_4 e_{ss} \Big|_{lin} + 2\sqrt{3}n_5 e_{rs} \Big|_{con}$$

$$\hat{e}_{ss}^{lin} = \frac{m_1}{\sqrt{3}} e_{rs} \Big|_{bil} + \sqrt{3}m_1 e_{ss} \Big|_{con} + \sqrt{3}m_2 e_{rr} \Big|_{con} + m_3 e_{ss} \Big|_{lin} + m_4 e_{rr} \Big|_{lin} + 2\sqrt{3}m_5 e_{rs} \Big|_{con}$$

$$n_{1} = \frac{1}{2} \left[\left(g_{r}^{r} \Big|_{(A)} \right)^{2} - \left(g_{r}^{r} \Big|_{(B)} \right)^{2} \right] \qquad n_{2} = \frac{1}{2} \left[\left(g_{r}^{s} \Big|_{(A)} \right)^{2} - \left(g_{r}^{s} \Big|_{(B)} \right)^{2} \right] \qquad n_{3} = \frac{1}{2} \left[\left(g_{r}^{r} \Big|_{(A)} \right)^{2} + \left(g_{r}^{r} \Big|_{(B)} \right)^{2} \right] \\ n_{4} = \frac{1}{2} \left[g_{r}^{r} \Big|_{(A)} \cdot g_{r}^{s} \Big|_{(A)} + g_{r}^{r} \Big|_{(B)} \cdot g_{r}^{s} \Big|_{(B)} \right] \qquad n_{5} = \frac{1}{2} \left[g_{r}^{r} \Big|_{(A)} \cdot g_{r}^{s} \Big|_{(A)} - g_{r}^{r} \Big|_{(B)} \cdot g_{r}^{s} \Big|_{(B)} \right] \\ m_{1} = \frac{1}{2} \left[\left(g_{s}^{s} \Big|_{(C)} \right)^{2} - \left(g_{s}^{s} \Big|_{(D)} \right)^{2} \right] \qquad m_{2} = \frac{1}{2} \left[\left(g_{s}^{r} \Big|_{(C)} \right)^{2} - \left(g_{s}^{r} \Big|_{(D)} \right)^{2} \right] \qquad m_{3} = \frac{1}{2} \left[\left(g_{s}^{s} \Big|_{(C)} \right)^{2} + \left(g_{s}^{s} \Big|_{(D)} \right)^{2} \right] \\ m_{4} = \frac{1}{2} \left[g_{s}^{r} \Big|_{(C)} \cdot g_{s}^{s} \Big|_{(C)} + g_{s}^{r} \Big|_{(D)} \cdot g_{s}^{s} \Big|_{(D)} \right] \qquad m_{5} = \frac{1}{2} \left[g_{s}^{r} \Big|_{(C)} \cdot g_{s}^{s} \Big|_{(C)} - g_{s}^{r} \Big|_{(D)} \cdot g_{s}^{s} \Big|_{(D)} \right]$$

Proposed formulation

$$\hat{\boldsymbol{e}}_{rr}^{lin} = \frac{3}{3-\alpha^2} (-\alpha \mathbf{x}_r \cdot \mathbf{u}_r - \beta \mathbf{x}_r \cdot \mathbf{u}_s + \mathbf{x}_r \cdot \mathbf{u}_d)$$
$$\hat{\boldsymbol{e}}_{ss}^{lin} = \frac{3}{3-\beta^2} (-\beta \mathbf{x}_s \cdot \mathbf{u}_s - \alpha \mathbf{x}_s \cdot \mathbf{u}_r + \mathbf{x}_s \cdot \mathbf{u}_d)$$

with $\mathbf{x}_d = \alpha \mathbf{x}_r + \beta \mathbf{x}_s$

Calculated directly from the characteristic vectors

- $\hat{e}_{rr} = e_{rr}|_{con} + \hat{e}_{rr}^{lin}\lambda(r,s)s$
- $\hat{e}_{ss} = e_{ss} \Big|_{con} + \frac{\hat{e}_{ss}^{lin}}{\lambda(r,s)r}$
- $\hat{e}_{rs} = e_{rs} \Big|_{con}$

with

- Simple implementation
- Almost same performance
- Promising feature in the shell

✤ How to adjust Gauss point

- Although there are infinitely many ways to modify Gauss point, only a few cases can pass the patch tests

- Rotation vs scaling?

 Q4
 : standard quadrilateral element

 ICM-Q4
 : incompatible modes element

 2D-MITC4
 : previous 2D-MITC4 element

 Reference
 : 9-node quadrilateral element

Strain energy for Cook's skew beam with 4×4 mesh

Element	Gauss integration	Strain energy	Normalization
Q4	Standard	5.899	0.491
2D-MITC4	Standard	8.676	0.722
2D-MITC4	Rotation(optimal)	8.719	0.726
2D-MITC4	Scaling(optimal)	11.177	0.930
Reference	-	12.017	1

-
$$\mathbf{K} = t \sum_{i=1}^{2} \sum_{j=1}^{2} w_i w_j \mathbf{F}(\xi_i, \xi_j)$$
 with $\mathbf{F}(r, s) = t \, \widehat{\mathbf{B}}^{\mathrm{T}}(r, s) \mathbf{C} \widehat{\mathbf{B}}(r, s) \det(\mathbf{J}(r, s))$

• Effect of adjusting parameter, μ

• Practical requirements for the adjusting parameter, μ

- $\mu = f(\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3, \mathbf{x}_4)$ should be uniquely and adaptively determined according to geometry distortion

Distortion measures

Proposed function for adjusting parameter

- $\mu = \cos^2(\theta)$
- \checkmark meets the requirements
- ✓ generally provides the best solution among the candidates

Basic numerical tests

Patch tests

- The minimum number of constraints are given to prevent rigid body motions.
- Proper loadings are applied to produce a constant stress field.
- In this tests, a constant stress field should be represented exactly.

Zero energy mode test

• A single unsupported 2D 4-node quadrilateral element should have only three zero energy modes.

Isotropy test

- The behavior of finite elements should not be affected by the node numbering sequence.

Numerical examples

Finite elements considered

- **Q4** : standard quadrilateral element
- ICM-Q4 : incompatible modes element (EAS element, QM6)
- **2D-MITC4** : previous 2D-MITC4 element
- **New 2D-MITC4** : proposed 2D-MITC4 element

Evaluation method

- Convergence of the relative error in strain energy E_r

$$=\frac{\left|E_{ref}-E_{h}\right|}{E_{ref}}$$

- Displacements and stresses
- Reference solutions are obtained by using 9-node solid element with <u>64×64</u> mesh

Mesh patterns

- Regular and distorted meshes
- h = 1/N for the element size
- $L_1: L_2: \ldots L_N = 1: 2: \ldots N$
- Arbitrary distorted meshes

Cook's skew beam

Force

Distributed shear force $f_s = 1/16$ (force/length)

Boundary condition

Left edge is clamped.

- Material property Plane stress condition with E = 1, v = 0.3
- Regular and two distorted meshes (N×N)
 N = 2, 4, 8, 16

25/62

2D-MITC4/1 : 2D-MITC4 with treatment of volumetric locking

Cook's skew beam

- Convergence curves

- Cook's skew beam
 - Normalized horizontal and vertical displacements at point *A*.

48

16

44

 $f_{s} = 1/16$

44

A

Computations are performed in a PC with Intel Core i7-8700, 3.20GHz CPU and 32GB RAM. The CSR format is used for storing matrices and MATLAB is used.

- Cook's skew beam
 - Computational efficiency curves

- For the ICM-Q4 element, the additional DOFs are condensed out in an element level.
- The number and positions of non-zeros in the total matrix are identical to each other.
- Thus, computation times during the construction of the total stiffness matrix are measured.

Cook's skew beam

- Shear stress distribution for the distorted mesh (N=8)

Block under body force

- Force
 - Body force $f_b = -4(y+1)^2 x^3$ (force per volume)
- Boundary condition
 - Clamed bottom side
- Dimensions and properties
 - Plane strain condition with $E = 2.0 \times 10^7$, v = 0.3
- Regular and two distorted meshes (N×N)
 N=2, 4, 8, 16
- Volumetric locking study
 - Nearly incompressible material

Distorted I

Distorted II

Regular

Block under body force

- Convergence curves in plane strain problem with v = 0.3

- Solution Holds and the second second
 - Convergence curves with nearly incompressible material (volumetric locking)

Numerical examples (Nonlinear)

Column under a compressive load

Force

Compressive load $P_{\text{max}} = 5 \times 10^3$.

- Boundary condition
 Bottom edge is clamped.
- Material property Plane stress condition with $E = 1 \times 10^6$, v = 0.
- Geometrically nonlinear analysis
- **Regular and distorted meshes** $(N \times 5N)$
 - N = 2.

Numerical examples (Nonlinear)

Column under a compressive load with <u>regular</u> mesh

- Load-displacement curves

- Deformed configurations

Numerical examples (Nonlinear)

Column under a compressive load with <u>distorted</u> mesh

- Load-displacement curves

- Deformed configurations

Topic 2

New MITC4+ shell element

4-node quadrilateral shell element

Research motivations

 θ

MITC4 shell element

MITC4: 4-node shell element with the MITC method - treatment for transverse shear locking.

Related studies

Reduced integration

- Zienkiewicz et al. (1971) / Belytshcko et al. (1982)
 - The reduced integration technique
 - Spurious zero energy modes problem
- Tsay et al. (1983) / Leviathan et al. (1994)
 Reduced integration with stabilization techniques
- Rankin and Nour-Omid. (1988)
 - Reduced integration with displacement projection

Assumed membrane strain

- Park and Stanley. (1986) / Roh and Cho. (2004)
 - Assumed natural strain(ANS) method
 - Patch test problem
- Kulikov et al. (2010)
 - Assumed natural strain(ANS) method
 - Exact geometry shell element
- Ko et al. (2017) → MITC4+
 - Mixed interpolated of tensorial component(MITC) method
 - Successfully alleviated the membrane locking

Research motivations

MITC4+ shell element

-1 0

30

 θ

60

00

Reference : MITC9

IITC4+: 4-node shell element with the MITC method - treatment for transverse shear locking.

- treatment for membrane locking.

Research motivations

Improved MITC4+ shell element

- The 2D-MITC4 solid element has been embedded into the MITC4+ shell element.
- The membrane performance was improved.

Related studies

is extended.

Previous 4-node quadrilateral MITC shell elements

Element	Description			
MITC4 (Dvorkin and Bathe, 1984)	 A continuum mechanics based 4-node shell element. The transverse shear locking is alleviated by constructing the assumed transverse shear strain field based on the <u>MITC approach</u>. 			
MITC4+ (Ko et al, 2017)	 The MITC4 shell element with alleviating membrane locking. The membrane locking is alleviated by assuming the locking-causing term as the linear combination of the strain coefficients. 			
Improved MITC4+ (Ko et al, 2017)	 The MITC4+ shell element with improved membrane behavior. The membrane behavior is improved by embedding the previous 2D-MITC4 solid element. 			
Problems : complicated formulation & sensitivity to the mesh distortion				
New MITC4+ (Proposed)	 The MITC4+ shell element with improved membrane behavior. The formulation is simplified by introducing the <u>new assumed membrane strain</u> field. To further improve its performance, the geometry dependent Gauss integration scheme is extended. 			

Previous MITC4+ shell element

Geometry and displacement interpolations

-
$$\mathbf{x} = \sum_{i=1}^{4} h_i(r,s) \mathbf{x}_i + \frac{t}{2} \sum_{i=1}^{4} a_i h_i(r,s) \mathbf{V}_n^i$$
 with $\mathbf{x}_i = [x_i \ y_i \ w_i]^T$

-
$$\mathbf{u} = \sum_{i=1}^{4} h_i(r,s) \mathbf{u}_i + \frac{t}{2} \sum_{i=1}^{4} a_i h_i(r,s) (-\alpha_i \mathbf{V}_2^i + \beta \mathbf{V}_1^i)$$

with $\mathbf{u}_i = \begin{bmatrix} u_i & v_i & w_i & \alpha_i & \beta_i \end{bmatrix}^T$

- Shape functions:
$$h_i = \frac{1}{4}(1 + \xi_i r)(1 + \eta_i s)$$

with
$$\begin{bmatrix} \xi_1 & \xi_2 & \xi_3 & \xi_4 \end{bmatrix} = \begin{bmatrix} 1 & -1 & -1 & 1 \end{bmatrix} \\ \begin{bmatrix} \eta_1 & \eta_2 & \eta_3 & \eta_4 \end{bmatrix} = \begin{bmatrix} 1 & 1 & -1 & -1 \end{bmatrix}$$

A 4-node quadrilateral shell element

Out-of-plane: e_{rt} , e_{st}

In-plane: e_{rr}, e_{ss}, e_{rs}

х

Covariant strain components

$$e_{ij} = \frac{1}{2} (\mathbf{g}_i \cdot \mathbf{u}_{j} + \mathbf{g}_j \cdot \mathbf{u}_{i})$$
 with $i, j = 1, 2, 3,$

where $\mathbf{g}_i = \frac{\partial \mathbf{x}}{\partial r_i}$, $\mathbf{u}_{,i} = \frac{\partial \mathbf{u}}{\partial r_i}$ with $r_1 = r$, $r_2 = s$, $r_3 = t$.

 $e_{11} = e_{rr}, e_{22} = e_{ss}, e_{12} = e_{rs}, e_{13} = e_{rt}, e_{23} = e_{st}$

Previous MITC4+ shell element

Separation of covariant strain components

- Out-of-plane

Transverse shear strain:

$$\tilde{e}_{rt} = \frac{1}{2}(1+s)e_{rt}^{(A)} + \frac{1}{2}(1-s)e_{rt}^{(B)}$$
$$\tilde{e}_{st} = \frac{1}{2}(1+r)e_{st}^{(C)} + \frac{1}{2}(1-r)e_{st}^{(D)}$$

Tying points for assumed transverse shear strain

- In-plane

$$e_{ij} = e_{ij}^{m} + te_{ij}^{b1} + t^{2}e_{ij}^{b2}, \quad i, j = 1, 2$$
with $\mathbf{x}_{m} = \sum_{i=1}^{4} h_{i}(r,s)\mathbf{x}_{i}, \quad \mathbf{x}_{b} = \frac{1}{2}\sum_{i=1}^{4} a_{i}h_{i}(r,s)\mathbf{V}_{n}^{i}, \quad \mathbf{u}_{m} = \sum_{i=1}^{4} h_{i}(r,s)\mathbf{u}_{i}, \quad \mathbf{u}_{b} = \frac{1}{2}\sum_{i=1}^{4} a_{i}h_{i}(r,s)(-\alpha\mathbf{V}_{2}^{i} + \beta\mathbf{V}_{1}^{i})$
Bending strain: $e_{ij}^{b1} = \frac{1}{2}\left(\frac{\partial \mathbf{x}_{m}}{\partial r_{i}} \cdot \frac{\partial \mathbf{u}_{b}}{\partial r_{j}} + \frac{\partial \mathbf{x}_{m}}{\partial r_{j}} \cdot \frac{\partial \mathbf{u}_{b}}{\partial r_{i}} + \frac{\partial \mathbf{x}_{b}}{\partial r_{i}} \cdot \frac{\partial \mathbf{u}_{m}}{\partial r_{j}} + \frac{\partial \mathbf{x}_{b}}{\partial r_{i}} \cdot \frac{\partial \mathbf{u}_{m}}{\partial r_{j}} + \frac{\partial \mathbf{x}_{b}}{\partial r_{i}} \cdot \frac{\partial \mathbf{u}_{m}}{\partial r_{i}}\right), \quad e_{ij}^{b2} = \frac{1}{2}\left(\frac{\partial \mathbf{x}_{b}}{\partial r_{i}} \cdot \frac{\partial \mathbf{u}_{b}}{\partial r_{j}} + \frac{\partial \mathbf{x}_{m}}{\partial r_{i}} \cdot \frac{\partial \mathbf{u}_{m}}{\partial r_{i}}\right)$
Membrane strain: $e_{ij}^{m} = \frac{1}{2}\left(\frac{\partial \mathbf{x}_{m}}{\partial r_{i}} \cdot \frac{\partial \mathbf{u}_{m}}{\partial r_{j}} + \frac{\partial \mathbf{x}_{m}}{\partial r_{j}} \cdot \frac{\partial \mathbf{u}_{m}}{\partial r_{i}}\right)$
Need to be modified

Previous MITC4+ shell element

Proposed MITC4+ shell element

Generalization of the assumed membrane strain field

$$\hat{e}_{rr}^{m} = \hat{e}_{rr}^{m(0,0)} + \lambda(r,s) \frac{\hat{e}_{rr}^{m(0,k)} - \hat{e}_{rr}^{m(0,-k)}}{2k} s = e_{rr}^{m} \Big|_{con} + \frac{1}{1 - k^{2} \alpha^{2}} [\lambda(r,s)(-2\alpha e_{rr}^{m} \Big|_{con} - 2\beta e_{rs}^{m} \Big|_{con} + e_{rr}^{m} \Big|_{lin}) s]$$

$$\hat{e}_{ss}^{m} = \hat{e}_{ss}^{m(0,0)} + \lambda(r,s) \frac{\hat{e}_{ss}^{m(k,0)} - \hat{e}_{ss}^{m(-k,0)}}{2k} r = e_{ss}^{m} \Big|_{con} + \frac{1}{1 - k^{2} \beta^{2}} [\lambda(r,s)(-2\beta e_{ss}^{m} \Big|_{con} - 2\alpha e_{rs}^{m} \Big|_{con} + e_{ss}^{m} \Big|_{lin}) r]$$

 $- \qquad \widehat{e}_{rs}^{m} = \widehat{e}_{rs}^{m(0,0)} = e_{rs}^{m}\Big|_{con}$

When $k = 1/\sqrt{3}$, the strain field becomes identical to the previous 2D-MITC4 solid element

♦ New assumed membrane strain field $(k \rightarrow 0)$

$$- \qquad \widehat{e}_{rr}^{m} = e_{rr}^{m}\Big|_{con} + \lambda(r,s)(-2\alpha e_{rr}^{m}\Big|_{con} - 2\beta e_{rs}^{m}\Big|_{con} + e_{rr}^{m}\Big|_{lin})s$$

$$- \qquad \widehat{e}_{ss}^{m} = e_{ss}^{m}\Big|_{con} + \lambda(r,s)(-2\beta e_{ss}^{m}\Big|_{con} - 2\alpha e_{rs}^{m}\Big|_{con} + e_{ss}^{m}\Big|_{lin})n$$

with a variable 'k'

 $- \qquad \widehat{e}_{rs}^{m} = e_{rs}^{m}\Big|_{con}$

To compare the complexity of the previous and the new formulations, it is rewritten in the matrix form.

Proposed MITC4+ shell element

-
$$\begin{bmatrix} \widehat{e}_{rr}^{AS} \\ \widehat{e}_{ss}^{AS} \\ \widehat{e}_{rs}^{AS} \end{bmatrix} = \mathbf{MD} \begin{bmatrix} e_{rr}^{m(A)} & e_{rr}^{m(B)} & e_{ss}^{m(C)} & e_{ss}^{m(D)} & e_{rs}^{m(E)} \end{bmatrix}^{\mathrm{T}}$$

$$- a_{A} = \frac{\alpha(\alpha - 1)}{2d}, a_{B} = \frac{\alpha(\alpha + 1)}{2d}, a_{C} = \frac{\beta(\beta - 1)}{2d}, a_{D} = \frac{\beta(\beta + 1)}{2d}, a_{E} = \frac{2\alpha\beta}{d}, d = \alpha^{2} + \beta^{2} - 1$$

		Improved MITC4+ (previous)	New MITC4+ (proposed)		
Membrane behavior improvement	М	$\lambda \begin{bmatrix} 1/\lambda + \sqrt{3}n_1s & \sqrt{3}m_2r & 0\\ \sqrt{3}n_2s & 1/\lambda + \sqrt{3}m_1r & 0\\ 2\sqrt{3}n_5s & 2\sqrt{3}m_5r & 1\\ n_3s & m_4r & 0\\ n_4s & m_3r & 0\\ n_1s/\sqrt{3} & m_1r/\sqrt{3} & 0 \end{bmatrix}$ $n_1 \sim n_5 \text{ and } m_1 \sim m_5 \text{ are calculated}$ from the equations in 15p	$\lambda \begin{bmatrix} 1/\lambda - 2\alpha s & 0 & 0 \\ 0 & 1/\lambda - 2\beta r & 0 \\ -2\beta s & -2\alpha r & 1 \\ s & 0 & 0 \\ 0 & r & 0 \end{bmatrix}^{\mathrm{T}}$		
Membrane locking alleviation	D	$\begin{bmatrix} 1/2 - a_A & 1/2 - a_B & -a_C & -a_D & -a_E \\ -a_A & -a_B & 1/2 - a_C & 1/2 - a_D & -a_E \\ 0 & 0 & 0 & 0 & 1 \\ 1/2 & -1/2 & 0 & 0 & 0 \\ 0 & 0 & 1/2 & -1/2 & 0 \\ a_A & a_B & a_C & a_D & a_E \end{bmatrix}$	$\begin{bmatrix} 1/2 - a_A & 1/2 - a_B & -a_C & -a_D & -a_E \\ -a_A & -a_B & 1/2 - a_C & 1/2 - a_D & -a_E \\ 0 & 0 & 0 & 0 & 1 \\ 1/2 & -1/2 & 0 & 0 & 0 \\ 0 & 0 & 1/2 & -1/2 & 0 \end{bmatrix}$		

Proposed MITC4+ shell element

 $\mathbf{F}(r,s,t) = \mathbf{B}^{\mathrm{T}}(r,s,t)\mathbf{C}\mathbf{B}(r,s,t)\det(\mathbf{J}(r,s,t))$

Integration of stiffness matrix

- Standard:
$$\mathbf{K} = \sum_{i=1}^{2} \sum_{j=1}^{2} \sum_{k=1}^{2} w_i w_j w_j \mathbf{F}(\xi_i, \xi_j, \xi_k)$$
 with $\xi_1 = \frac{1}{\sqrt{3}}$, $\xi_2 = -\frac{1}{\sqrt{3}}$ and $w_1 = w_2 = 1$

- Modified:
$$\mathbf{K} = \sum_{i=1}^{2} \sum_{j=1}^{2} \sum_{k=1}^{2} w_i w_j w_j \mathbf{F}(\hat{\boldsymbol{\xi}}_i, \hat{\boldsymbol{\xi}}_j, \boldsymbol{\xi}_k)$$
 with $\hat{\boldsymbol{\xi}}_i = \mu \boldsymbol{\xi}_i$ and $\mu = \cos^2(\theta)$

- \checkmark The skew angle is measured in the plane P
- ✓ Geometry dependent Gauss integration in *r*-*s* plane
- \checkmark Standard Gauss integration in thickness direction t

Basic numerical tests

Patch tests

- The minimum number of constraints are given to prevent rigid body motions.
- Proper loadings are applied to produce a constant stress field.
- In this tests, a constant stress field should be represented exactly.

Zero energy mode test

- A single unsupported 4-node quadrilateral shell element should have only six zero energy modes.

Isotropy test

- The behavior of finite elements should not be affected by the node numbering sequence.

Finite elements considered

Element	Transverse shear locking	Membrane locking	Membrane behavior	Nonlinear formulation
MITC4 (Dvorkin and Bathe, 1984)	0	Х	Standard Q4	0
MITC4+ (Ko et al, 2017)	0	0	Standard Q4	0
Improved MITC4+ (Ko et al, 2017)	Ο	0	Previous 2D-MITC4	-
New MITC4+ (proposed)	0	0	New 2D-MITC4	0

Evaluation in linear analysis

- Convergence of the relative error in s-norm $E_h = \left\| \mathbf{u}_{ref} \mathbf{u}_h \right\|_s^2 / \left\| \mathbf{u}_{ref} \right\|_s^2$ with $\left\| \mathbf{u}_{ref} \mathbf{u}_h \right\|_s^2 = \int_{\Omega} \Delta \boldsymbol{\varepsilon}^{\mathrm{T}} \Delta \boldsymbol{\tau} d\Omega$
- According to decreasing in shell thickness (t/L = 1/100, 1/1000, 1/10000)
- Reference solutions are calculated using a <u>96×96</u> regular mesh of the <u>MITC9 shell elements</u>.

Evaluation in nonlinear analysis

- Displacements at specific locations and deformed configurations

Scordelis-Lo roof

- Force
 - Self weight $f_z = -90$ (force per area)
- Boundary condition
 - Diaphragm
- Dimensions and properties

 $-R = L = 25.0, E = 4.32 \times 10^8, v = 0.0$

• **Two distorted meshes** (*N*×*N*)

- *N* = 4, 8, 16, 32, 64

Scordelis-Lo roof

- Convergence behavior (mixed behavior)

51/62

Hyperbolic cylinder

Regular mesh

Distorted mesh

- Force
 - Tip distributed load $p_x = -z$ (force per length)
- Boundary condition
 - Clamed one side
- Dimensions and properties
 - $-z = 4y^2, y \in [0, 0.5]$
 - $L = 2.0, E = 2.0 \times 10^{11}, v = 1/3$
- **Regular and distorted meshes** (*N*×*N*)
 - *N* = 4, 8, 16, 32, 64

✤ Hyperbolic cylinder

- Convergence behavior

Thin curved beam

- Load-displacement curves at point *A*

Loading condition

- Tip forces $P = P_1 = P_2 = 100$ at free tip

- Boundary condition
 - Clamped bottom side
- Dimensions and properties

-
$$R_1 = 4.12, R_2 = 4.32, t = 0.1$$

- $-E = 1.0 \times 10^7$, v = 0.25
- **Regular mesh** $(N \times 6N)$
 - N = 1 for finite element solution
 - N = 2 for reference solution (regular)

Thin curved beam

- Initial and deformed configurations at several load steps

Slit annular plate

- Problem description

Loading condition

- Distributed forces p = 0.8 (force per length)
- Boundary condition
 - Clamped one side
- Dimensions and properties
 - $R_1 = 6.0, R_2 = 10.0, t = 0.03$
 - $E = 2.1 \times 10^7$, $\nu = 0.0$
- **Regular and distorted meshes** (*N*×8*N*)
 - N = 3 for finite element solution
 - N = 12 for reference solution (regular)

Distorted mesh

Slit annular plate

- Load-displacement curves at points *A* and *C*

✤ Slit annular plate

- Final deformed configurations with the distorted mesh

MITC4

MITC4+

New MITC4+

4. Conclusions & Future works

Conclusions

Topic 1 – New 2D-MITC4 solid element

- Simplified formulation is presented to investigate the behavior of the element.
- A geometry dependent Gauss integration scheme for the 2D-MITC4 solid element has been proposed.
- The proposed element provides more accurate solutions than the previous 2D-MITC4 solid element especially in distorted meshes.

Topic 2 – New MITC4+ shell element

- A new assumed membrane strain field for the MITC4+ element has been proposed to simplify its formulation.
- The geometry dependent Gauss integration scheme is extended into the membrane strain field of the MITC4+ shell element.
- The membrane behavior of the proposed MITC4+ shell element has been successfully improved in both linear and nonlinear analysis.

Future works

1. Improve the performance of the 3D solid finite element

Solid

- ✓ Distortion measure
- ✓ Adjusting parameter
- ✓ Assumed strain field

2. Mass matrix for dynamic and modal analyses

감사합니다.