Ph. D. degree dissertation presentation

확장된 Saint-Venant 비틀림 이론 및 이를 이용한 비틀림을 받는 빔의 위상 최적화

Extended Saint-Venant torsion theory and its application to topology optimization of beams under torsion

Dong-Hwa Lee

2021.12.06

Department of Mechanical Engineering 1. Introduction

2. Classical Saint-Venant torsion theory

3. Extended Saint-Venant torsion theory

4. Topology optimization of beam cross-sections

5. Conclusion & Future works

1. Introduction

Applications of beam finite element analysis

Concept of the continuum mechanics based beam model

Concept of the continuum mechanics based beam model

Imposing warping mode into beam element

Imposing warping mode into beam element

Benscoter type warping enrichment methods

$${}^{e} \mathbf{x}^{(d)}(r,s,t) = \sum_{k=1}^{P} h_{k}(r) \left({}^{b} \mathbf{x}_{k} + \sum_{n=1}^{R} H^{n}(s,t) \left({}^{n} \overline{x}_{k}^{(d)} \mathbf{V}_{\overline{x}}^{k} + {}^{n} \overline{y}_{k}^{(d)} \mathbf{V}_{\overline{y}}^{k} \right) \right) + \sum_{k=1}^{P} h_{k}(r) \left(\sum_{n=1}^{R} H^{n}(s,t) {}^{n} f_{k}^{(d)} \mathbf{V}_{\overline{z}}^{k} \alpha_{k} \right)$$
$$= \sum_{k=1}^{P} h_{k}(r) \left({}^{b} \mathbf{x}_{k} + \sum_{n=1}^{R} H^{n}(s,t) {}^{n} \overline{x}_{k}^{(d)} \mathbf{V}_{\overline{x}}^{k} + {}^{n} \overline{y}_{k}^{(d)} \mathbf{V}_{\overline{y}}^{k} + {}^{n} \overline{f}_{k}^{(d)} \mathbf{V}_{\overline{z}}^{k} \alpha_{k} \right) \right)$$

Previous researches using Benscoter type warping enrichment methods

Yoon, K., & Lee, P. S. (2014). Modeling the warping displacements for discontinuously varying arbitrary cross-section beams. Computers & Structures, 131, 56-69.
 Yoon, K., & Lee, P. S. (2014). Nonlinear performance of continuum mechanics based beam elements focusing on large twisting behaviors. Computer Methods in Applied Mechanics and Engineering, 281, 106-130.

[3] Yoon, K., Lee, P. S., & Kim, D. N. (2015). Geometrically nonlinear finite element analysis of functionally graded 3D beams considering warping effects. Composite Structures, 132, 1231-1247.

2. Classical Saint-Venant torsion theory

Classical Saint-Venant torsion theory

Kinematics (Rigid body rotation)

$$u = -(y - \lambda_y)\alpha$$
$$v = (x - \lambda_x)\alpha$$
$$w = f(x, y)\frac{d\alpha}{dz}$$

Governing equation

$$G \frac{\partial^2 w}{\partial x^2} + G \frac{\partial^2 w}{\partial y^2} + E \frac{\partial^2 w}{\partial z^2} = 0$$
 in Ω

Boundary condition

$$G\frac{\partial w}{\partial x}n_x + G\frac{\partial w}{\partial y}n_y + E\frac{\partial w}{\partial z}n_z = -G\frac{\partial v}{\partial z}n_y - G\frac{\partial u}{\partial z}n_x \quad \text{on } \partial\Omega$$

- Rigid body rotation (from twisting center)
- Small rotation & strain

- Pure twisting condition
- Static condition with no body force

Classical Saint-Venant torsion theory

- Rigid body rotation (from twisting center)
- Small rotation & strain

- Pure twisting condition
- Static condition with no body force

Discretized Classical Saint-Venant torsion theory

Governing equation & Boundary condition

✤ Linearized matrix form of classical Saint-Venant's torsion theory

$$\begin{bmatrix} \mathbf{K}_{w} & \mathbf{N}_{x} & \mathbf{N}_{y} \\ \mathbf{H}_{x} & \mathbf{0} & \mathbf{0} \\ \mathbf{H}_{y} & \mathbf{0} & \mathbf{0} \\ \mathbf{H}_{z} & \mathbf{0} & \mathbf{0} \end{bmatrix} \begin{bmatrix} \mathbf{F} \\ \lambda_{x} \\ \lambda_{y} \end{bmatrix} = \begin{bmatrix} \mathbf{B} \\ \mathbf{0} \\ \mathbf{0} \\ \mathbf{0} \\ \mathbf{0} \end{bmatrix}$$

3. Extended Saint-Venant torsion theory

Research motivation

Research motivation

✤ Interface warping function using Lagrange Multiplier Method

Yoon, K., & Lee, P. S. (2014). Modeling the warping displacements for discontinuously varying arbitrary cross-section beams. Computers & Structures, 131, 56-69.

Research motivation

- Interface warping function using Lagrange Multiplier Method
 - ➤ 7~9 DOFs per node, depending on boundary condition
 - Modified equations are required to solve partially constrained interface
 - Hard to model discontinuously varying composite material

Yoon, K., & Lee, P. S. (2014). Modeling the warping displacements for discontinuously varying arbitrary cross-section beams. Computers & Structures, 131, 56-69.

Research purpose

- > Objectives
 - ✓ Method of obtaining **exact warping function** with discontinuous cross-section
 - ✓ General method: independent from boundary condition
- ➢ Key idea
 - ✓ Extending classical St.Venant torsion theory to the longitudinal direction
- ➤ Which is expected?
 - More accurate result at discontinuous cross-section
 - ✓ Cost efficient with 7 DOF/node
 - ✓ **Generosity** with arbitrary boundary condition

Yoon, K., & Lee, P. S. (2014). Modeling the warping displacements for discontinuously varying arbitrary cross-section beams. Computers & Structures, 131, 56-69.

Extended Saint-Venant torsion theory

$$G\frac{\partial w}{\partial x}n_x + G\frac{\partial w}{\partial y}n_y + E\frac{\partial w}{\partial z}n_z = -G\frac{\partial v}{\partial z}n_y - G\frac{\partial u}{\partial z}n_x \quad \text{on } \partial\Omega$$

- Rigid body rotation (from twisting center)
- Small rotation & strain

- Pure twisting condition
- Static condition with no body force

Extended Saint-Venant torsion theory

✤ Coordinate transformation

(

$$\tilde{x} = x, \ \tilde{y} = y, \ \text{and} \ \tilde{z} = \sqrt{\frac{G}{E}} z \qquad \qquad \frac{\partial}{\partial \tilde{x}} = \frac{\partial}{\partial x}, \\ \frac{\partial}{\partial \tilde{y}} = \frac{\partial}{\partial y}, \ \text{and} \ \frac{\partial}{\partial \tilde{z}} = \sqrt{\frac{E}{G}} \frac{\partial}{\partial z}$$

✤ New governing equation and boundary condition

$$G\left(\frac{\partial^2 w}{\partial \tilde{x}^2} + \frac{\partial^2 w}{\partial \tilde{y}^2} + \frac{\partial^2 w}{\partial \tilde{z}^2}\right) = 0 \quad \text{in } \Omega$$

$$G\left(\frac{\partial w}{\partial \tilde{x}}\widetilde{n_x} + \frac{\partial w}{\partial \tilde{y}}\widetilde{n_y} + \frac{\partial w}{\partial \tilde{z}}\widetilde{n_z}\right) = -G\sqrt{\frac{G}{E}}\left(\frac{\partial u}{\partial \tilde{z}}\widetilde{n_x} + \frac{\partial v}{\partial \tilde{z}}\widetilde{n_y} + \left(\frac{E}{G} - \sqrt{\frac{E}{G}}\right)\frac{\partial w}{\partial \tilde{z}}\widetilde{n_z}\right) \quad \text{on } \partial\Omega$$

Variational formulation & Principle of Virtual Work

$$D = \int \overline{\widetilde{\nabla}}^{2} (Gw) \delta f \, d\widetilde{\Omega} = \int \overline{\widetilde{\nabla}} \left(\overline{\widetilde{\nabla}} (Gw) \right) \delta f \, d\widetilde{\Omega}$$

$$= \int \overline{\widetilde{\nabla}} \left(\overline{\widetilde{\nabla}} (Gw) \delta f \right) d\widetilde{\Omega} - \int \overline{\widetilde{\nabla}} (Gw) \overline{\widetilde{\nabla}} (\delta f) \, d\widetilde{\Omega} \qquad \text{(Integration by parts)}$$

$$= \int \overline{\widetilde{\nabla}} (Gw) \delta f \, \mathbf{n} \, d\partial\widetilde{\Omega} - \int \overline{\widetilde{\nabla}} (Gw) \overline{\widetilde{\nabla}} (\delta f) \, d\widetilde{\Omega} \qquad \text{(Divergence theorem)}$$

Discretization of the extended Saint-Venant torsion theory

$$\mathbf{K}_{w}\mathbf{U} - \mathbf{N}_{z}\tilde{\mathbf{\Lambda}}_{y} + \mathbf{N}_{y}\tilde{\mathbf{\Lambda}}_{z} + \mathbf{B}_{c}\mathbf{A} = \mathbf{0}$$
 Extended Saint-Venant's torsion theory

$$\mathbf{Q}_{x}\mathbf{U} = \mathbf{0}, \quad \mathbf{Q}_{y}\mathbf{U} = \mathbf{0}, \quad \mathbf{Q}_{z}\mathbf{U} = \mathbf{0}$$
 Orthogonality condition

$$\mathbf{R}_{w}\mathbf{U} - \mathbf{S}_{y}\tilde{\mathbf{\Lambda}}_{y} - \mathbf{S}_{z}\tilde{\mathbf{\Lambda}}_{z} + \mathbf{J}_{x}\mathbf{A} = M_{x}\mathbf{1}$$
 Stress equilibrium condition

Linearized matrix form of extended Saint-Venant's torsion theory

$$\begin{bmatrix} \mathbf{K}_{w} & -\mathbf{N}_{z} & \mathbf{N}_{y} & \mathbf{B}_{c} \\ \mathbf{Q}_{x} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbf{Q}_{y} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbf{Q}_{z} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbf{R}_{w} & -\mathbf{S}_{y} & -\mathbf{S}_{z} & \mathbf{J}_{x} \end{bmatrix} \begin{bmatrix} \mathbf{U} \\ \tilde{\mathbf{\Lambda}}_{y} \\ \tilde{\mathbf{\Lambda}}_{z} \\ \mathbf{A} \end{bmatrix} = M_{x} \begin{bmatrix} \mathbf{0} \\ \mathbf{0} \\ \mathbf{0} \\ \mathbf{0} \\ \mathbf{1} \end{bmatrix}$$

Numerical example

Ex1. Partially reinforced wide flange beam

Problem description

 $\Omega_0 = 2 \times 10^{11} [Pa]$ $\Omega_r = 6 \times 10^{11} [Pa]$ v = 0.0

Ex1. Partially reinforced wide flange beam

✤ Nonlinear analysis result

ANSYS solid model (5,223 DOFs)

ANSYS BEAM188 (63 DOFs)

Δ

Ex2. Partially constrained warping problem

Problem description

 $E = 2 \times 10^{11} [Pa]$ v = 0.0

Ex2. Partially constrained warping problem

Modeling of partially constrained condition and its warping functions

Partially constrained condition

Ex3. Step varying rectangular cross-section beam

Problem description

 $E = 2 \times 10^{11} [Pa]$ v = 0.0

Ex3. Step varying rectangular cross-section beam

✤ Nonlinear analysis result

Ex4. Circular beam with step varying rectangular cross-section

23,943 DOF (27-node standard solid element)

91 DOF (2-node 7DOF beam element)

Ex4. Circular beam with step varying rectangular cross-section

4. Topology optimization of beam cross-sections

Structural topology optimization – Minimizing compliance

➢ Compliance

$$C = \mathbf{U}^T \mathbf{K} \mathbf{U} = \sum_{e=1}^N \mathbf{U}_e^T \mathbf{K}_e \mathbf{U}_e$$

- Solid Isotropic Material with Penalization method (SIMP) $\widetilde{\mathbf{C}_e} = (\rho_e)^p \widetilde{\mathbf{C}_0}$ (ρ_e : relative density, p: penalization factor)
- Structural optimization to minimizing compliance

Find:
$$\mathbf{\rho} = [\rho_1, \rho_2, ..., \rho_e, ..., \rho_n]^T$$

to minimize: $C = \mathbf{U}^T \mathbf{K} \mathbf{U}$ subject to : $g = \sum_{e=1}^{N} \rho_e V_e - V_0 \le 0$ $\mathbf{K} \mathbf{U} = \mathbf{F}$ $0 \le \rho_e \le 0, e = 1, \dots, N$

Motivation

Structural optimization using solid elements

Aircraft assembly part

Seat belt bracket

Medical implant

✓ Limited to small parts

Beam manufacturing methods

✓ Cross-sections are constant

Motivation

Related works

Thin-walled beam composed of nodes

beam cross-section k

Thick beam composed of sub-beams

- ➢ Kim and Kim (2000)
 - Linear combination of torsional stiffness (w_i) & principle bending stiffness (w_j)
 - Combination weights are artificially selected
 - Warping is considered
 - No torsion-bending coupling effect
 - Based on straight constant beam
- ➢ Liu et al. (2008)
 - Based on solid-like beam model
 - 5 Local deformation modes are considered
 - High computational cost
 - Based on straight beam

w_i=1.0

w_i=1.0, w_j=0.02

Research purpose

- > Objectives
 - ✓ Design of **optimized beam cross-sectional shapes** at a given load
 - ✓ Beam topology optimization considering **warping effect**
- ➢ Key idea
 - ✓ Interface warping function with Benscoter type enrichment
- ➤ Which is expected?
 - ✓ Highest stiffness at a given mass and volume beam cross-section
 - ✓ Accurate result considering interface warping
 - Fully coupled effects (bending-twisting)
 - ✓ Cost efficient with 7 DOF/node

Sensitivity derivation

- Sensitivity derivation with warping displacement enrichment
 - Sensitivity with warping function

$$\frac{dC}{d\rho_e^b} = -\mathbf{U}^T \frac{d\mathbf{K}}{d\rho_e^b} \mathbf{U} = -\mathbf{U}^T \left(\frac{\partial \mathbf{K}}{\partial \rho_e^b} + \frac{d\mathbf{f}}{d\rho_e^b} \frac{\partial \mathbf{K}}{\partial \mathbf{f}}\right) \mathbf{U}$$

Calculation from the continuum mechanics based beam

$$\frac{d\mathbf{K}}{df_{j}} = \iiint \frac{d\mathbf{\tilde{B}}^{T}}{df_{j}} \mathbf{\tilde{C}} \mathbf{\tilde{B}} \| \mathbf{J} \| dr \, ds \, dt + \iiint \mathbf{\tilde{B}}^{T} \mathbf{\tilde{C}} \frac{d\mathbf{\tilde{B}}}{df_{j}} \| \mathbf{J} \| dr \, ds \, dt$$
$$\frac{d\mathbf{\tilde{B}}_{nm}}{df_{j}} = \frac{1}{2} \left[\frac{d}{df_{j}} \left(\frac{d\mathbf{L}}{dr_{k}} \right) \mathbf{g}_{l} + \frac{d}{df_{j}} \left(\frac{d\mathbf{L}}{dr_{l}} \right) \mathbf{g}_{k} \right] \left(\mathbf{t}_{n} \cdot \mathbf{g}^{k} \right) \left(\mathbf{t}_{m} \cdot \mathbf{g}^{l} \right)$$

Calculation from the interface warping function

Calculation technique

- ✤ Eliminating chain-rule summation
 - Summation into a single matrix form

$$\frac{d\mathbf{f}}{d\rho_e^b} \frac{\partial \mathbf{K}}{\partial \mathbf{f}} = \mathbf{f}' \frac{\partial \mathbf{K}}{\partial \mathbf{f}} = \sum_j f'_j \frac{\partial \mathbf{K}}{\partial f_j}$$

$$= \sum_j \left[\iiint \left(f'_j \frac{\partial \mathbf{\tilde{B}}^T}{\partial f_j} \right) \mathbf{\tilde{C}} \mathbf{\tilde{B}} \| \mathbf{J} \| dr \, ds \, dt + \iiint \mathbf{\tilde{B}}^T \mathbf{\tilde{C}} \left(f'_j \frac{\partial \mathbf{\tilde{B}}}{\partial f_j} \right) \| \mathbf{J} \| dr \, ds \, dt \right]$$

$$\mathbf{\tilde{B}}' = \sum_j \frac{\partial \left(f'_j \mathbf{\tilde{B}}_{nm} \right)}{\partial f_j} = \frac{1}{2} \left[\frac{d\mathbf{L}'}{dr_k} \mathbf{g}_l + \frac{d\mathbf{L}'}{dr_l} \mathbf{g}_k \right] (\mathbf{t}_n \cdot \mathbf{g}^l) (\mathbf{t}_m \cdot \mathbf{g}^l)$$

$$\mathbf{L}' = h_i \begin{bmatrix} 0 & 0 & 0 & 0 & 0 & 0 & \overline{f}' V_{rx}^i \\ 0 & 0 & 0 & 0 & 0 & \overline{f}' V_{rx}^i \\ 0 & 0 & 0 & 0 & 0 & \overline{f}' V_{rx}^i \end{bmatrix} \quad \text{with} \quad \overline{f}' = H_j f'_j$$

$$= \iiint \widetilde{\mathbf{B}'}^T \widetilde{\mathbf{C}} \widetilde{\mathbf{B}} \| \mathbf{J} \| dr \, ds \, dt + \iiint \widetilde{\mathbf{B}}^T \widetilde{\mathbf{C}} \widetilde{\mathbf{B}'} \| \mathbf{J} \| dr \, ds \, dt$$

Numerical example

[1] Liu, K., & Tovar, A. (2014). An efficient 3D topology optimization code written in Matlab. Structural and Multidisciplinary Optimization, 50(6), 1175-1196.

Problem description

	Proposed beam	Reference solid	ANSYS
Volume fraction	0.3 / 0.5 / 0.6	0.3 / 0.5 / 0.6	0.3 / 0.5 / 0.6
Penalization factor	<i>p</i> =3	<i>p</i> =3	<i>p</i> =3
Optimizer	OC	OC	OC
Tolerance	0.001	0.001	0.001

[1] Kim, Y. Y., & Kim, T. S. (2000). Topology optimization of beam cross sections. International journal of solids and structures, 37(3), 477-493.

		Proposed beam	Reference solid	ANSYS
Cor	npliance	254.5439	255.9978	-
# of des	ign variables	40×40×1	40×40×15	40×40×25
DOF of in	verse problem	5,052	45,387	126,075
···O	verhead	3.5 [s]	593 [s]	59 [s]
Iteration	Average iteration time	5.5 [s/iter]	76.3 [s/iter]	40.6 [s/iter]
	# of iterations	12 [iter]	31 [iter]	18 [iter]
То	tal time	69.5 [s]	2958.2 [s]	789.9 [s]

[1] Kim, Y. Y., & Kim, T. S. (2000). Topology optimization of beam cross sections. International journal of solids and structures, 37(3), 477-493.

	Proposed beam	Reference solid	ANSYS
Compliance	254.5439	255.9978	-
# of design variables	40×40×1	40×40×15	40×40×25
DOF of inverse problem	5,052	45,387	126,075
ANSYS -		Iteration time Overhead	789.9 [s] ×11.4 slower
Solid –			2958.2 [s] ×42.6 slower
Beam —			69.5 [s]
0 500 1000	1500 200 Flansed time (c)	L 2500 3	J 000

[1] Kim, Y. Y., & Kim, T. S. (2000). Topology optimization of beam cross sections. International journal of solids and structures, 37(3), 477-493.

Problem description

	Proposed beam	Reference solid	ANSYS
Volume fraction	0.5	0.5	0.5
Penalization factor	<i>p</i> =3	<i>p</i> =3	<i>p</i> =3
Optimizer	OC / MMA	OC / MMA	OC
Tolerance	0.001	0.001	0.001

✤ Optimized using MMA

✤ Optimized using OC

Proposed beam

Solid reference

ANSYS

		Proposed beam	Reference solid	ANSYS
Cor	npliance	660.4315	676.6892	-
# of des	ign variables	48×48×1	48×48×9	48×48×26
DOF of in	verse problem	5,484	38,325	147,825
01	verhead	5.9 [s]	1469 [s]	51.6 [s]
Iteration	Average iteration time	34.7 [s/iter]	234.9 [s/iter]	106.7 [s/iter]
	# of iterations	23 [iter]	101 [iter]	17 [iter]
То	tal time	804.0 [s]	25,193.9 [s]	1,865.5 [s]

Proposed beam

Solid reference

ANSYS

	Proposed beam	Reference solid	ANSYS
Compliance	660.4315	676.6892	-
# of design variables	48×48×1	48×48×9	48×48×26
DOF of inverse problem	5,484	38,325	147,825
ANSYS Solid Beam		Iteration time Overhead	1865.5 [s] ×2.32 slower 25193.9 [s] ×31.3 slower 804.0 [s]
0 0.45 0.9	1.35 Flansed time (s)	1 1.8 2.25 ×1	 2.7 0 ⁴

Problem description

	Proposed beam	Reference solid	ANSYS
Volume fraction	0.5	0.5	0.5
Penalization factor	<i>p</i> =3	<i>p</i> =3	<i>p</i> =3
Optimizer	OC	OC	OC
Tolerance	0.001	0.001	0.001

5. Conclusion & Future works

Conclusion & Future work

- 1. Method of calculating an interface warping function is proposed
 - ✓ The proposed method can be used to solve the beam with material/geometric discontinuity which cannot be solved using ANSYS.
 - ✓ It provides high modeling capabilities, including arbitrary-shaped curved composite beams.
 - \checkmark The method can be extended to solve non-linear problems using 7 DOF/node.
 - \checkmark It has better accuracy and a lower computational cost than the previous work.

Generalized beam theory

Conclusion & Future work

- 2. Topology optimization of beam considering interface warping is proposed
 - ✓ The proposed method can be applied to design thin/thick beams with arbitrarily shaped design space.
 - ✓ The method inherits the high modeling capability and fully coupled bendingtwisting behavior from the continuum mechanics based beam.
 - ✓ It provides faster optimization results with fewer iterations than optimizations using solid elements.
 - \checkmark It can be easily extended to design beams with different objective functions.

Vibration optimization problem

Thank you

ANSYS Topology Optimization Result

ANSYS Topology Optimization Result

