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1. Introduction



Applications of beam finite element analysis

Bridge Offshore platform Wire cable

Physical model Solid model
594 DOFs

Shell model
352 DOFs

Beam model
36 DOFs
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Concept of the continuum mechanics based beam model
5

degeneration

Solid Beam

Solid

Nodal interpolation

Cross-sectional interpolation

Continuum mechanics based beam

Cross-sections remain plane



Concept of the continuum mechanics based beam model
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degeneration

Solid Beam

Cross-sections remain plane

Warping of thin-walled beamWarping of thick square beam



Imposing warping mode into beam element
7

Solid Nodal interpolation

Cross-sectional interpolation

Warping interpolation

Beam with warping mode

 kα  ×



Functionally graded material[2]

Imposing warping mode into beam element

 Benscoter type warping enrichment methods
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Discontinuous cross-section[1] Buckling analysis[3]

[1] Yoon, K., & Lee, P. S. (2014). Modeling the warping displacements for discontinuously varying arbitrary cross-section beams. Computers & Structures, 131, 56-69.
[2] Yoon, K., & Lee, P. S. (2014). Nonlinear performance of continuum mechanics based beam elements focusing on large twisting behaviors. Computer Methods in Applied 
Mechanics and Engineering, 281, 106-130.
[3] Yoon, K., Lee, P. S., & Kim, D. N. (2015). Geometrically nonlinear finite element analysis of functionally graded 3D beams considering warping effects. Composite 
Structures, 132, 1231-1247.

 Previous researches using Benscoter type warping enrichment methods
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2. Classical Saint-Venant torsion theory



Classical Saint-Venant torsion theory

 ( )yu y λ α= − −

 ( )xv x λ α= −

 ( , ) dw f x y
dz
α

=

 Kinematics (Rigid body rotation)

2 2 2

2 2 2 0w w wG G E
x y z

∂ ∂ ∂
+ + =

∂ ∂ ∂

 Governing equation

 Boundary condition

x y z y x
w w w v uG n G n E n G n G n
x y z z z

∂ ∂ ∂ ∂ ∂
+ + = − −

∂ ∂ ∂ ∂ ∂

 Rigid body rotation (from twisting center)
 Small rotation & strain

 Pure twisting condition
 Static condition with no body force

in Ω

on ∂Ω
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Classical Saint-Venant torsion theory

 ( )yu y λ α= − −

 ( )xv x λ α= −

 ( , ) dw f x y
dz
α

=

 Kinematics (Rigid body rotation)

2 2 2

2 2 2 0w w wG G E
x y z

∂ ∂ ∂
+ + =

∂ ∂ ∂

 Governing equation

 Boundary condition

x y z y x
w w w v uG n G n E n G n G n
x y z z z

∂ ∂ ∂ ∂ ∂
+ + = − −

∂ ∂ ∂ ∂ ∂

 Rigid body rotation (from twisting center)
 Small rotation & strain

 Pure twisting condition
 Static condition with no body force

constant

0

0

Constant cross-section

constantd
dz
α
=

in Ω

on ∂Ω
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Discretized Classical Saint-Venant torsion theory

Weak form of Saint-Venant’s torsion theory

12

 Linearized matrix form of classical Saint-Venant’s torsion theory

Orthogonality condition0, 0, 0x y z= = =H F H F H F

 w x x y yλ λ+ − =K F N N B
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 Governing equation & Boundary condition
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in Ω on ∂Ω



3. Extended Saint-Venant torsion theory



Research motivation

 Interface warping function for discontinuity
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Research motivation

 Interface warping function using Lagrange Multiplier Method

Yoon, K., & Lee, P. S. (2014). Modeling the warping displacements for discontinuously varying arbitrary cross-section beams. 
Computers & Structures, 131, 56-69.

Combination of two equation using Lagrange multipliers
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Cross-section (II)

Cross-section (I)



Research motivation

 Interface warping function using Lagrange Multiplier Method

 7~9 DOFs per node, depending on boundary condition

 Modified equations are required to solve partially constrained interface

 Hard to model discontinuously varying composite material

16

Yoon, K., & Lee, P. S. (2014). Modeling the warping displacements for discontinuously varying arbitrary cross-section beams. 
Computers & Structures, 131, 56-69.



Research purpose

Yoon, K., & Lee, P. S. (2014). Modeling the warping displacements for discontinuously varying arbitrary cross-section beams. 
Computers & Structures, 131, 56-69.
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 Objectives
 Method of obtaining exact warping function with discontinuous cross-section

 Key idea

 Which is expected?

 Extending classical St.Venant torsion theory to the longitudinal direction

 General method: independent from boundary condition

 More accurate result at discontinuous cross-section

 Cost efficient with 7 DOF/node

 Generosity with arbitrary boundary condition



Extended Saint-Venant torsion theory

 ( )yu y λ α= − −

 ( )xv x λ α= −

 ( , ) dw f x y
dz
α

=

 Kinematics (Rigid body rotation)

2 2 2

2 2 2 0w w wG G E
x y z

∂ ∂ ∂
+ + =

∂ ∂ ∂

 Governing equation

 Boundary condition

x y z y x
w w w v uG n G n E n G n G n
x y z z z

∂ ∂ ∂ ∂ ∂
+ + = − −

∂ ∂ ∂ ∂ ∂

 Rigid body rotation (from twisting center)
 Small rotation & strain

 Pure twisting condition
 Static condition with no body force

constant

0

0

Constant cross-section

constantd
dz
α
=

in Ω

on ∂Ω
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Extended Saint-Venant torsion theory

 Coordinate transformation

, , and Gx x y y z z
E
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in Ω

on ∂Ω

 New governing equation and boundary condition

 Variational formulation & Principle of Virtual Work

   ( ) 

2
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(Integration by parts)

(Divergence theorem)



 w y y z z x xM− − + =R U S S J A 1 Λ Λ

Discretization of the extended Saint-Venant torsion theory

Extended Saint-Venant’s torsion theory
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 Linearized matrix form of extended Saint-Venant’s torsion theory

Orthogonality condition , ,x y z= = =Q U 0 Q U 0 Q U 0

Stress equilibrium condition



Numerical example
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Proposed warping beam modelFree warping beam model



Ex1. Partially reinforced wide flange beam

 Problem description 11
0

11

Ω 2 10 [Pa]

Ω 6 10 [Pa]
0.0

1[Nm]

r

x

v
M

= ×

= ×
=
=

10,935 DOF
(27-node standard solid element)

22

63 DOF
(2-node 7DOF beam element)



Ex1. Partially reinforced wide flange beam

 Linear analysis result

23

 Nonlinear analysis result

 ( , ) (0,0.2234)y zλ λ =  ( , ) (0,0.1487)y zλ λ =  ( , ) (0,0)y zλ λ =



Ex2. Partially constrained warping problem

 Problem description
112 10 [Pa]

0.0
E
v
= ×
=
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19,803 DOF
(27-node standard solid element)

63 DOF
(2-node 7DOF beam element)



Ex2. Partially constrained warping problem

 Modeling of partially constrained condition and its warping functions

25

 Fully constrained condition

 ( , ) (0,0)y zλ λ = ( , ) (0, 0.4369)y zλ λ = −

 Partially constrained condition



Ex3. Step varying rectangular cross-section beam

 Problem description

26

8,055 DOF
(27-node standard solid element)

63 DOF
(2-node 7DOF beam element)

112 10 [Pa]
0.0

E
v
= ×
=



Ex3. Step varying rectangular cross-section beam

 Linear analysis result

27

 Nonlinear analysis result

( , ) (0,0)y zλ λ = ( , ) (0, 0.0833)y zλ λ = − ( , ) (0, 0.25)y zλ λ = −



Ex4. Circular beam with step varying rectangular cross-section

 Problem description

28

112 10 [Pa]
0.0

E
v
= ×
=

23,943 DOF
(27-node standard solid element)

91 DOF
(2-node 7DOF beam element)



23,943 DOF
(27-node standard solid element)

Ex4. Circular beam with step varying rectangular cross-section

 Deformed configurations

29

 Nonlinear analysis result
91 DOF

(2-node 7DOF beam element)



4. Topology optimization of 
beam cross-sections



Structural topology optimization – Minimizing compliance

 Solid Isotropic Material with Penalization method (SIMP)

 Structural optimization to minimizing compliance

 Compliance

(𝜌𝜌𝑒𝑒: relative density,   𝑝𝑝 : penalization factor)

to minimize:

subject to :

31
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Rolling

Motivation
32

Medical implantSeat belt bracketAircraft assembly part

Extrusion Welding

 Structural optimization using solid elements

 Beam manufacturing methods

 Limited to small parts

 Cross-sections are constant



Motivation
33

Size optimization Shape optimization Topology optimization

Solid element
(44,928 element)

Beam element
(1,728 sub-beam)

 Beam optimization

 Finite element modeling of beam structure



Related works
34

Thin-walled beam composed of nodes Thick beam composed of sub-beams

𝑤𝑤𝑖𝑖=1.0

 Kim and Kim (2000)

 Liu et al. (2008)

• Linear combination of torsional stiffness(𝑤𝑤𝑖𝑖) & principle bending stiffness (𝑤𝑤𝑗𝑗)
• Combination weights are artificially selected
• Warping is considered
• No torsion-bending coupling effect
• Based on straight constant beam

𝑤𝑤𝑖𝑖=1.0,  𝑤𝑤𝑗𝑗=0.02

• Based on solid-like beam model
• 5 Local deformation modes are considered
• High computational cost
• Based on straight beam



Research purpose

 Objectives
 Design of optimized beam cross-sectional shapes at a given load

 Key idea

 Which is expected?

35

 Highest stiffness at a given mass and volume

 Interface warping function with Benscoter type enrichment

 Beam topology optimization considering warping effect

 Accurate result considering interface warping

 Fully coupled effects (bending-twisting)

 Cost efficient with 7 DOF/node
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Sensitivity derivation

 Sensitivity derivation with warping displacement enrichment

 Sensitivity with warping function

 Calculation from the continuum mechanics based beam

 Calculation from the interface warping function
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Calculation technique

 Eliminating chain-rule summation
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 Summation into a single matrix form 
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Proposed beam model Reference solid model ANSYS

In-House Code
(MATLAB)

Revised Code [1]
(MATLAB)

Commercial Software
(Fortran, C/C++)

FEM

Matrix size 
to solve 3ab × c + [7c] [3abc] [3abc]

Parallel Partially vectorized Fully vectorized Parallel code

Sparsity Non-Sparse matrix Sparse matrix Sparse matrix 

Inverse solver QR Decomposition Symmetric Cholesky Symmetric PCG

Optimization

Methodology SIMP SIMP SIMP

Optimizer OC/MMA OC/MMA OC

Tolerance 0.001 0.001 0.001

Numerical example
38

[1] Liu, K., & Tovar, A. (2014). An efficient 3D topology optimization code written in Matlab. Structural and Multidisciplinary Optimization, 50(6), 1175-1196.



Ex1. Square-section beam problem

 Problem description

1[Pa]
0.3

1[Nm]x

E
v
M

=
=
=

39

Proposed beam Reference solid ANSYS

Volume fraction 0.3 / 0.5 / 0.6 0.3 / 0.5 / 0.6 0.3 / 0.5 / 0.6

Penalization factor p=3 p=3 p=3

Optimizer OC OC OC

Tolerance 0.001 0.001 0.001



Ex1. Square-section beam problem
40

30% mass constraint

50% mass constraint

60% mass constraint

Proposed Beam Objective function

# of iteration: 18
Compliance: 379.865

# of iteration: 17
Compliance: 254.544

# of iteration: 24
Compliance: 223.936



Ex1. Square-section beam problem
41

SolidKim and Kim [1] ANSYS

[1] Kim, Y. Y., & Kim, T. S. (2000). Topology optimization of beam cross sections. International journal of solids and structures, 37(3), 477-493.

30% mass constraint

50% mass constraint

60% mass constraint

Proposed



Ex1. Square-section beam problem
42

SolidKim and Kim [1] ANSYS

[1] Kim, Y. Y., & Kim, T. S. (2000). Topology optimization of beam cross sections. International journal of solids and structures, 37(3), 477-493.

Proposed

Proposed beam Reference solid ANSYS

Compliance 254.5439 255.9978 -

# of design variables 40×40×1 40×40×15 40×40×25

DOF of inverse problem 5,052 45,387 126,075

Overhead 3.5 [s] 593 [s] 59 [s]

Iteration
Average 

iteration time 5.5 [s/iter] 76.3 [s/iter] 40.6 [s/iter] 

# of iterations 12 [iter] 31 [iter] 18 [iter]

Total time 69.5 [s] 2958.2 [s] 789.9 [s]

50% mass constraint



Ex1. Square-section beam problem
43

SolidKim and Kim [1] ANSYS

[1] Kim, Y. Y., & Kim, T. S. (2000). Topology optimization of beam cross sections. International journal of solids and structures, 37(3), 477-493.

Proposed

Proposed beam Reference solid ANSYS

Compliance 254.5439 255.9978 -

# of design variables 40×40×1 40×40×15 40×40×25

DOF of inverse problem 5,052 45,387 126,075

×42.6 slower

×11.4 slower

69.5 [s]

2958.2 [s]

789.9 [s]

50% mass constraint



Ex2. L-section beam problem

 Problem description

44

1[Pa]
0.3

1[Nm]x

E
v
M

=
=
=

Proposed beam Reference solid ANSYS

Volume fraction 0.5 0.5 0.5

Penalization factor p=3 p=3 p=3

Optimizer OC / MMA OC / MMA OC

Tolerance 0.001 0.001 0.001



Ex2. L-section beam problem
45

 Optimized using MMA

Proposed beam

# of iteration: 27
Compliance: 706.68

# of iteration: 570
Compliance: 788.15

Solid reference



Ex2. L-section beam problem
46

 Optimized using OC

Proposed beam

Solid reference

# of iteration: 23
Compliance: 660.43

# of iteration: 101
Compliance: 676.69



Ex2. L-section beam problem
47

Solid reference ANSYSProposed beam

Proposed beam Reference solid ANSYS

Compliance 660.4315 676.6892 -

# of design variables 48×48×1 48×48×9 48×48×26

DOF of inverse problem 5,484 38,325 147,825

Overhead 5.9 [s] 1469 [s] 51.6 [s]

Iteration
Average 

iteration time 34.7 [s/iter] 234.9 [s/iter] 106.7 [s/iter] 

# of iterations 23 [iter] 101 [iter] 17 [iter]

Total time 804.0 [s] 25,193.9 [s] 1,865.5 [s]



Ex2. L-section beam problem
48

Solid reference ANSYSProposed beam

Proposed beam Reference solid ANSYS

Compliance 660.4315 676.6892 -

# of design variables 48×48×1 48×48×9 48×48×26

DOF of inverse problem 5,484 38,325 147,825

×31.3 slower

×2.32 slower

804.0 [s]

25193.9 [s]

1865.5 [s]



Ex3. 90-degree curved beam problem

 Problem description

49

1[Pa]
0.3

1[Nm]x

E
v
M

=
=
=

Proposed beam Reference solid ANSYS

Volume fraction 0.5 0.5 0.5

Penalization factor p=3 p=3 p=3

Optimizer OC OC OC

Tolerance 0.001 0.001 0.001



Ex3. 90-degree curved beam problem
50

(I) (II) (III) (IV)

(V) (VI) (VII) (VIII)

Optimizer: OC
Mesh: 30×30

# of iteration: 34
Compliance: 21.891

 Proposed beam



Ex3. 90-degree curved beam problem
51

 Proposed beam

(I) (II) (III) (IV)

(V) (VI) (VII) (VIII)

# of iteration: 22
Compliance: 21.810

Optimizer: OC
Mesh: 60×60



Ex3. 90-degree curved beam problem
52

 Solid reference

(I) (II) (III) (IV)

(V) (VI) (VII) (VIII)

# of iteration: 940
Compliance: 18.174

Optimizer: OC
Mesh: 30×30



Ex3. 90-degree curved beam problem
53

Proposed Beam
(30×30)

Solid reference

ANSYS

Proposed Beam
(60×60)

Proposed beam Reference solid ANSYS

Compliance 21.8909 18.1737 -

# of design variables 30×30×8 30×30×24 30×30×112

DOF of inverse problem 2,895 72,075 325,779

Stiffness construction 14 [s] 1556 [s] 116 [s]

Iteration
Average 

iteration time 27.3 [s/iter] 92.7 [s/iter] 100.1 [s/iter] 

# of iterations 34 [iter] 940 [iter] 14 [iter]

Total time 942.2 [s] 88,756 [s] 1,518 [s]



Ex3. 90-degree curved beam problem
54

Proposed beam Reference solid ANSYS

Compliance 21.8909 18.1737 -

# of design variables 30×30×8 30×30×24 30×30×112

DOF of inverse problem 2,895 72,075 325,779

×94.2 slower

×1.61 slower

942.2 [s]

88,756 [s]

1,518 [s]

Proposed Beam
(30×30)

Solid reference

ANSYS

Proposed Beam
(60×60)



5. Conclusion & Future works



Conclusion & Future work

1. Method of calculating an interface warping function is proposed

56

 The proposed method can be used to solve the beam with material/geometric 
discontinuity which cannot be solved using ANSYS.

 It provides high modeling capabilities, including arbitrary-shaped curved 
composite beams.

 The method can be extended to solve non-linear problems using 7 DOF/node.

 It has better accuracy and a lower computational cost than the previous work.

Functionally graded beam Generalized beam theory 



Conclusion & Future work

2. Topology optimization of beam considering interface warping is proposed

57

 The proposed method can be applied to design thin/thick beams with 
arbitrarily shaped design space.

 The method inherits the high modeling capability and fully coupled bending-
twisting behavior from the continuum mechanics based beam.

 It provides faster optimization results with fewer iterations than optimizations 
using solid elements.

 It can be easily extended to design beams with different objective functions.

Vibration optimization problemStress based optimization problem



Thank you



Appendix



Ex1. Square-section beam problem
60

 ANSYS Topology Optimization Result



Ex2. L-section beam problem
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 ANSYS Topology Optimization Result



Ex3. 90-degree curved beam problem
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 ANSYS Topology Optimization Result
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