변형률 완화 요소법: 향상된 저차 솔리드 및 쉘 유한요소 개발

The strain-smoothed element method: a method for developing improved low-order solid and shell finite elements

Chaemin Lee

2020.06.01

Department of Mechanical Engineering

1. Introduction

2. Research background

3. Research topics

- ✓ Topic 1: Strain-smoothed linear 2D & 3D solid elements
- ✓ Topic 2: Strain-smoothed 4-node quadrilateral 2D solid element
- ✓ Topic 3: Improving the membrane behavior of the MITC3+ shell element
- ✓ Topic 4: Acoustic radiation analysis using the strain-smoothed triangular element.
- ✓ Topic 5: Variational formulation for the strain-smoothed element method.

4. Conclusions & Future works

1. Introduction

FEM in Engineering Fields

Aerospace Engineering

Offshore Engineering

Automotive Engineering

Architectural Engineering

Biomedical Engineering

<u>https://altairhyperworks.com/industry/</u>

http://www.lminnomaritime.com/application-of-fem-on-ships-structural-design/

FEM in Engineering Fields

- ABAQUS
- ADINA
- ANSYS
- NASTRAN

3. New applications.

4. Real-time analysis.

 산학과제. 시뮬레이션 기반 고정도 선체 변형 및 정도 예측 시스템 개발. 한국과학기술원 이필승 외. 03

Solutions

- 1. Powerful computer components.
- Parallelization, optimization, faster algorithms.
- Development of finite element technologies.

Finite Elements

 Fundamentally affecting the accuracy and efficiency of FEA.

2D solid elements

3D solid elements

Shell & beam

Standard 3-node element

Proposed 3-node element

Finite Elements

Stiff behaviors of finite elements

Mesh refinement (*h* refinement, *p* refinement and *r* refinement) is tried first.

Various attempts for improving FE solutions

- 1. Reduced integrations & assumed strain methods
 - ✓ URI (Uniform Reduced Integration) and SRI (Selective Reduced Integration).
 - ✓ ANS (Assumed Natural Strain) and MITC (Mixed Integration of Tensorial Components).
- 2. Enrichment methods
 - ✓ Enriched FEM, XFEM (eXtended FEM) and GFEM (Generalized FEM).
- 3. Strain smoothing methods
 - ✓ Node, Edge, Face and Cell-based S-FEM (Smoothed FEM).

2. Research background

Linear elastic boundary value problem

Let $\Omega \subset \mathbb{R}^2$ be a bounded and polygonal domain. The boundary $\partial \Omega$ of Ω consists of two parts $\Gamma_D \neq \emptyset$ and $\Gamma_N = \partial \Omega \setminus \Gamma_D$. div $\boldsymbol{\sigma} + \mathbf{b} = \mathbf{0}$ in Ω , (equilibrium equations) $\boldsymbol{\sigma}^T \mathbf{n} = \mathbf{t}$ on Γ_N , $\mathbf{u} = \mathbf{0}$ on Γ_D , (boundary conditions) $\boldsymbol{\sigma} = \mathbf{D}\boldsymbol{\varepsilon}$ in Ω , (constitutive equations) $\boldsymbol{\varepsilon} = \frac{1}{2}(\nabla \mathbf{u} + \nabla \mathbf{u}^T)$ in Ω , (strain-displacement equations)

where **D** is a 3×3 matrix of material constants that is symmetric and positive definite.

Weak formulation

Find $\mathbf{u} \in V$ such that $a(\mathbf{u}, \mathbf{v}) = f(\mathbf{v}), \quad \forall \mathbf{v} \in V,$ where $a(\mathbf{u}, \mathbf{v}) = \int_{\Omega} \mathbf{D} \mathbf{\varepsilon}[\mathbf{u}] : \mathbf{\varepsilon}[\mathbf{v}] d\Omega,$ $f(\mathbf{v}) = \int_{\Omega} \mathbf{b} \cdot \mathbf{v} \, d\Omega + \int_{\Gamma_V} \mathbf{t} \cdot \mathbf{v} \, d\Gamma.$ space of displacement fields: $V = \left\{ \mathbf{u} \in (H^1(\Omega))^2 : \mathbf{u} = \mathbf{0} \text{ on } \Gamma_D \right\}.$

space of strain and stress fields: $W = (L^2(\Omega))^3$.

Finite element formulation

 $\mathbf{K}\mathbf{U} = \mathbf{F} = \mathbf{F}_{B} + \mathbf{F}_{S},$ where $\mathbf{K} = \sum_{m=1}^{e} \int_{\Omega^{(m)}} \mathbf{B}^{(m)T} \mathbf{D} \mathbf{B}^{(m)} d\Omega, \quad \mathbf{F}_{B} = \sum_{m=1}^{e} \int_{\Omega^{(m)}} \mathbf{H}^{(m)T} \mathbf{b} d\Omega, \quad \mathbf{F}_{S} = \sum_{m=1}^{e} \int_{\Gamma^{(m)}} \mathbf{H}^{(m)T} \mathbf{t} d\Gamma.$ $\mathbf{\epsilon}^{(m)} = \mathbf{B}^{(m)} \mathbf{u}^{(m)} \text{ where } \mathbf{B}^{(m)T} = \begin{bmatrix} \partial/\partial x & 0 & \partial/\partial y \\ 0 & \partial/\partial y & \partial/\partial x \end{bmatrix}.$

Smoothing operation

: strain defined for finite elements.

3

 $\int_{\Omega^{(k)}} \mathbf{\varepsilon}(\mathbf{x}) \Phi_k(\mathbf{x}) d\Omega.$

✓ valid for strains with constant values.

: smoothed strain defined for smoothing domain.

 $\tilde{\mathbf{\epsilon}}_k$

Smoothing domain

- The area where strain smoothing is performed.
- This domain crosses the finite elements.

 $\Omega^{(k)}$: *k*th smoothing domain.

Smoothing function

$$\Phi_k(\mathbf{x}) = \begin{cases} 1/A^{(k)}, & \mathbf{x} \in \Omega^{(k)} \\ 0, & \mathbf{x} \notin \Omega^{(k)} \end{cases}.$$

 $A^{(k)}$: area of the smoothing domain $\Omega^{(k)}$. $\Phi_k(\mathbf{x})$: smoothing function for domain $\Omega^{(k)}$. Smoothing domain (continued)

History

1. Development of smoothing methods for 2D & 3D linear solid elements.

Chen et al. (2001)

- The strain smoothing method was first proposed for the Galerkin mesh-free method.

- Liu et al. (2007)
 - A cell-based S-FEM was proposed for 2D solid mechanics problems.
 - An element is subdivided into finite number of smoothing cells (SCs).
 - Depending on the number of SCs, it possesses spurious zero energy mode.

Liu et al. (2009)

- A node-based S-FEM was proposed for 2D solid mechanics problems.
- It is effective for solving volumetric locking.
- It gives overly soft solutions.

Liu et al. (2009)

- An edge-based S-FEM was proposed for 3-node triangular 2D solid element.
- It shows the best performance among the previous strain smoothing methods.

Nguyen-Thoi et al. (2009)

- A face-based S-FEM was proposed for 4-node tetrahedral 3D solid element.
- The improvement of performance is not significant.

History

2. Extension to Polygonal & Polyhedral Solid Elements; Plate & Shell Elements

- Dai et al. (2007)
 - An n-sided polygonal cell-based S-FEM was proposed for solid mechanics problems.
- Nguyen-Thanh et al. (2008)
 - A cell-based S-FEM for shell analysis was proposed.
- Cui et al. (2009)
 - An edge-based S-FEM for shell analysis was proposed.
- Nguyen-Thoi et al. (2011)
 - An n-sided polygonal edge-based S-FEM was proposed for solid mechanics problems.
- Sohn and Im (2013)
 - Variable-node plate and shell elements with smoothed integration was proposed.
- Shin and Lee (2015)
 - A strain-smoothed 3-node triangular flat shell element with drilling DOFs was proposed.
- Nguyen-Hoang et al. (2016)
 - A combined scheme of edge and node-based S-FEMs for shell analysis was proposed.

Lee et al. (2017)

- An n-sided polyhedral edge/node-based S-FEMs was proposed for solid mechanics problems.

History

3. Extension to Other Physics & Analysis

➢ He et al. (2009)

- An edge-based S-FEM was proposed for 3D acoustic problems.

Bordas et al. (2010)

- Strain smoothing in XFEM was proposed.

Sohn et al. (2013)

- A new carving technique combined with smoothed integration was proposed.

Wang et al. (2015)

- A stable node-based smoothed finite element method for acoustic problems.

Jin et al. (2016)

- Polyhedral type variable-node elements was proposed for 3D contact analysis.

Eric et al. (2016)

- An S-FEM for analysis of multi-layered systems in biomaterials was proposed.

Onishi et al. (2017)

- An F-bar aided edge-based S-FEM was proposed.

Hamrani et al. (2017)

- A cell-based isogeometric analysis for 2D mechanics problems was proposed.

≻ He (2019)

- A CS-FEM for the numerical simulation of viscoelastic fluid flow was proposed.

1. Introduction

2. Research background

3. Research topics

- ✓ Topic 1: Strain-smoothed linear 2D & 3D solid elements
- ✓ Topic 2: Strain-smoothed 4-node quadrilateral 2D solid element
- ✓ Topic 3: Improving the membrane behavior of the MITC3+ shell element
- ✓ Topic 4: Acoustic radiation analysis using the strain-smoothed triangular element.
- ✓ Topic 5: Variational formulation for the strain-smoothed element (SSE) method.

4. Conclusions & Future works

3. Research Topics

Topic 1

Strain-smoothed linear 2D & 3D solid elements

3-node triangular

2D solid element

4-node tetrahedral3D solid element

The 3-node triangular element

Geometry and displacement interpolations

•
$$\mathbf{x} = \sum_{i=1}^{3} h_i(r, s) \mathbf{x}_i$$
 with $\mathbf{x}_i = \begin{bmatrix} x_i & y_i \end{bmatrix}^T$.

•
$$\mathbf{u} = \sum_{i=1}^{3} h_i(r, s) \mathbf{u}_i$$
 with $\mathbf{u}_i = \begin{bmatrix} u_i & v_i \end{bmatrix}^T$

• Shape functions: $h_1 = 1 - r - s$, $h_2 = r$, $h_3 = s$.

3-node triangular2D solid element

Strain field

•
$$\mathbf{\epsilon}^{(e)} = \mathbf{B}^{(e)} \mathbf{u}^{(e)}$$
 with $\mathbf{u}^{(e)} = [\mathbf{u}_1 \quad \mathbf{u}_2 \quad \mathbf{u}_3]^T$,

$$\mathbf{B}^{(e)} = \begin{bmatrix} \mathbf{B}_1 & \mathbf{B}_2 & \mathbf{B}_3 \end{bmatrix}.$$

 The 3-node triangular element has a constant strain field.

• Lee C, Lee PS. A new strain smoothing method for triangular and tetrahedral finite elements. Comput Methods Appl Mech Eng 2018;341:939–955.

The 3-node element with the SSE method

The strain-smoothed element (SSE) method for the 3-node element

- $\boldsymbol{\epsilon}^{\scriptscriptstyle(e)}$: Strain of the target element.
- $\mathbf{\epsilon}^{(k)}$: Strain of the k^{th} neighboring element.

 $A^{(e)}$: Area of the target element.

 $A^{(k)}$: Area of the k^{th} neighboring element.

Step 1 of 2 Strain smoothing between the target element and each neighboring element.

If neighboring element exists through kth edge,

$$\hat{\boldsymbol{\varepsilon}}^{(k)} = \frac{1}{A^{(e)} + A^{(k)}} (A^{(e)} \boldsymbol{\varepsilon}^{(e)} + A^{(k)} \boldsymbol{\varepsilon}^{(k)}).$$

If there is no neighboring element,

The 3-node element with the SSE method

Step 2 of 2

Construction of the smoothed strain field through Gauss points.

 $\times c(p,q)$

a(p,p)

b(q,p)

p = 1/6

q = 4/6

1st strain smoothing (<u>in previous page</u>)

$$\hat{\boldsymbol{\varepsilon}}^{(k)} = \frac{1}{A^{(e)} + A^{(k)}} (A^{(e)} \boldsymbol{\varepsilon}^{(e)} + A^{(k)} \boldsymbol{\varepsilon}^{(k)}).$$

➤ 2nd strain smoothing within elements

$$\boldsymbol{\varepsilon}^{a} = \frac{1}{2} (\hat{\boldsymbol{\varepsilon}}^{(1)} + \hat{\boldsymbol{\varepsilon}}^{(3)}),$$
$$\boldsymbol{\varepsilon}^{b} = \frac{1}{2} (\hat{\boldsymbol{\varepsilon}}^{(1)} + \hat{\boldsymbol{\varepsilon}}^{(2)}),$$
$$\boldsymbol{\varepsilon}^{c} = \frac{1}{2} (\hat{\boldsymbol{\varepsilon}}^{(2)} + \hat{\boldsymbol{\varepsilon}}^{(3)}).$$

$$\overline{\mathbf{\epsilon}}^{(e)} = \left[1 - \frac{1}{q-p}(r+s-2p)\right] \mathbf{\epsilon}^{a} + \frac{r-p}{q-p} \mathbf{\epsilon}^{b} + \frac{s-p}{q-p} \mathbf{\epsilon}^{c}.$$

The Strain-Smoothed Element (SSE) Method

- Special smoothing domains.
- Constant strain fields.
- Some improvement in accuracy.

Edge-based smoothing domain

Strain-Smoothed Element (SSE) method

- Finite elements.
- ✤ (Bi-) linear strain fields.
- ✤ Very high accuracy.

FEM domain (w/ SSE method)

The 4-node tetrahedral element

Geometry and displacement interpolations

•
$$\mathbf{x} = \sum_{i=1}^{4} h_i(r, s, t) \mathbf{x}_i$$
 with $\mathbf{x}_i = \begin{bmatrix} x_i & y_i & z_i \end{bmatrix}^T$.

•
$$\mathbf{u} = \sum_{i=1}^{4} h_i(r, s, t) \mathbf{u}_i$$
 with $\mathbf{u}_i = \begin{bmatrix} u_i & v_i & w_i \end{bmatrix}^T$.

• Shape functions: $h_1 = 1 - r - s - t$, $h_2 = r$, $h_3 = s$, $h_4 = t$.

Strain field

•
$$\mathbf{\epsilon}^{(e)} = \mathbf{B}^{(e)} \mathbf{u}^{(e)}$$
 with $\mathbf{u}^{(e)} = [\mathbf{u}_1 \quad \mathbf{u}_2 \quad \mathbf{u}_3 \quad \mathbf{u}_4]^T$,
 $\mathbf{B}^{(e)} = [\mathbf{B}_1 \quad \mathbf{B}_2 \quad \mathbf{B}_3 \quad \mathbf{B}_4].$

• The 4-node tetrahedral element has a constant strain field.

4-node tetrahedral3D solid element

The strain-smoothed element (SSE) method for the 4-node element

The 4-node element with the SSE method

Smoothed strain field

$$\overline{\mathbf{\epsilon}}^{(e)} = \left[1 - \frac{1}{q-p}(r+s+t-3p)\right] \mathbf{\epsilon}^{a} + \frac{r-p}{q-p}\mathbf{\epsilon}^{b} + \frac{s-p}{q-p}\mathbf{\epsilon}^{c} + \frac{t-p}{q-p}\mathbf{\epsilon}^{d}.$$

Zero energy mode test

- The number of zero eigenvalues of the stiffness matrix of unsupported elements is counted.
- The 2D and 3D solid elements should have three and six zero eigenvalues, respectively.

Isotropic element test

The finite elements should give the same results regardless of the node numbering sequences used.

Patch tests

- The minimum number of DOFs is constrained to prevent rigid body motions.
- Proper loadings are applied to produce a constant stress field.
- To satisfy the patch tests, a constant stress value should be obtained at every point on elements.

Finite elements considered

- Standard FEM : 3-node triangular element
- ES-FEM : 3-node triangular element with the edge-based S-FEM
- SSE (proposed) : 3-node triangular element with the SSE method

Evaluation method

- Convergence curves obtained using the energy norm $E_e^2 = \frac{\left\| \mathbf{u}_{ref} \right\|_e^2 \left\| \mathbf{u}_h \right\|_e^2}{\left\| \mathbf{u}_{ref} \right\|^2}$ with $\left\| \mathbf{u} \right\|_e^2 = \int_{\Omega} \varepsilon^T \sigma d\Omega$.
- Displacements and stresses.

Reference solution

✤ Reference solutions are calculated using a <u>64×64</u> regular mesh of <u>9-node 2D solid elements</u>.

N	Test elements	Reference		
2	18	50	Degrees of	
4	50	162		
8	162	578		
16	578	2,178	freedom	
64	8,450	33,282	(DOFs) per A	

1) 2D block problem

Regular mesh

Distorted mesh Force

Distributed compression force P = 1.

Boundary condition

Bottom edge is clamped.

Material property (plane stress condition)

 $E = 3 \times 10^7$, v = 0.3, $\rho = 1 \times 10^7$.

Regular meshes (N×N elements)

N = 2, 4, 8, 16.

Distorted meshes (N_e elements)

 $N_e = 6, 32, 128, 500.$

The distorted meshes are acquired through

the commercial software ANSYS.

1) 2D block problem

Convergence curves.

2) Column under a compressive load problem

Force

Compressive load $P_{\text{max}} = 5 \times 10^3$.

Boundary condition

Bottom edge is clamped.

- Material property (plane stress condition) $E = 10^6$, v = 0.
- Regular meshes (N×5N elements)

N = 8, 16.

2) Column under a compressive load problem

von Mises stress distributions for the regular mesh (N = 8).

Finite elements considered

- Standard FEM : 4-node tetrahedral element
- FS-FEM : 4-node tetrahedral element with the face-based S-FEM
- **ES-FEM** : 4-node tetrahedral element with the edge-based S-FEM
- **SSE (proposed)** : 4-node tetrahedral element with the SSE method

Evaluation method

- Convergence curves obtained using the energy norm $E_e^2 = \frac{\left\| \mathbf{u}_{ref} \right\|_e^2 \left\| \mathbf{u}_h \right\|_e^2}{\left\| \mathbf{u}_{ref} \right\|^2}$ with $\left\| \mathbf{u} \right\|_e^2 = \int_{\Omega} \boldsymbol{\varepsilon}^T \boldsymbol{\sigma} d\Omega$.
- Displacements and stresses.

Reference solution

Reference solutions are calculated using a <u>16×16×16</u> regular mesh of <u>27-node 3D solid elements</u>.

	N	Test elements	Reference	
A mach of	2	81	375	Degrees of freedom
	4	375	2,187	
<i>N×N×N</i> elements	8	2,187	14,739	
(N = 4)	16	14,739	107,811	(DOFs) per N

1) Lame problem

Force

Internal pressure p = 1.

Boundary condition

Symmetric boundary conditions are imposed.

Material property

 $E = 1 \times 10^3$, v = 0.3.

• **Regular meshes (** $N \times N \times N$ elements)

N =2, 4, 8.

1) Lame problem

Convergence curves.

• von Mises stress at point G.

Ν	Standard FEM	FS-FEM	ES-FEM	SSE (proposed)
2	106.2858	125.3865	150.2877	166.7563
	(38.00)	(26.86)	(12.33)	(2.73)
4	132.7286	143.6493	157.3288	166.3370
	(22.58)	(16.20)	(8.22)	(2.97)
8	149.4181	155.2355	162.2212	166.6823
	(12.84)	(9.45)	(5.37)	(2.77)
16	159.4205	162.5707	167.5228	169.5621
	(7.00)	(5.17)	(2.28)	(1.09)

- Reference solution: 171.4286
- The values in () indicate relative errors (%).
Topic 2

Strain-smoothed 4-node quadrilateral 2D solid element

4-node quadrilateral 2D solid element

The 4-node quadrilateral element

Standard 4-node quadrilateral element

- ✓ Geometry and displacement interpolations
 - $\mathbf{x} = \sum_{i=1}^{4} \hat{h}_i(r, s) \mathbf{x}_i$ with $\mathbf{x}_i = \begin{bmatrix} x_i & y_i \end{bmatrix}^T$.
 - $\mathbf{u} = \sum_{i=1}^{4} \hat{h}_i(r,s) \mathbf{u}_i$ with $\mathbf{u}_i = \begin{bmatrix} u_i & v_i \end{bmatrix}^T$.
- ✓ Strain field
 - $\mathbf{\epsilon}^{(m)} = \nabla \mathbf{u}^{(m)}$ with $\mathbf{u}^{(m)} = [\mathbf{u}_1 \ \mathbf{u}_2 \ \mathbf{u}_3 \ \mathbf{u}_4]^T$.
 - $\mathbf{\epsilon}^{(m)} = \mathbf{B}^{(m)}\mathbf{u}^{(m)}$ with $\mathbf{B}^{(m)} = \begin{bmatrix} \mathbf{B}_1 & \mathbf{B}_2 & \mathbf{B}_3 & \mathbf{B}_4 \end{bmatrix}$.
 - The 4-node 2D element has a non-constant strain field due to *rs* term in shape functions.

Smoothing operation

$$\tilde{\mathbf{\varepsilon}}_k = \int_{\Omega^{(k)}} \mathbf{\varepsilon}(\mathbf{x}) \Phi_k(\mathbf{x}) d\Omega.$$

✓ valid for strains with constant values.

✓ Standard bilinear shape functions:

$$\hat{h}_1 = (1-r)(1-s)/4,$$
 $\hat{h}_2 = (1+r)(1-s)/4,$
 $\hat{h}_3 = (1+r)(1+s)/4,$ $\hat{h}_4 = (1-r)(1+s)/4.$

The strain smoothing method cannot be applied to standard 4-node element.

The 4-node element

Comparison of the piecewise linear & standard bilinear shape functions

- The two shape functions corresponding to node 3 along element edges and a diagonal r = s are depicted.
- The two shape functions show different variations along the diagonal.

The 4-node element

Modified 4-node quadrilateral element

• The element domain is subdivide into four non-overlapping triangular domains (from T1 to T4).

✓ Geometry and displacement interpolations
•
$$\mathbf{x} = \sum_{i=1}^{4} h_i(r, s) \mathbf{x}_i$$
 with $\mathbf{x}_i = \begin{bmatrix} x_i & y_i \end{bmatrix}^T$.
• $\mathbf{u} = \sum_{i=1}^{4} h_i(r, s) \mathbf{u}_i$ with $\mathbf{u}_i = \begin{bmatrix} u_i & v_i \end{bmatrix}^T$.

✓ Strain field

$$\mathbf{u}^{k} \mathbf{\varepsilon}^{(m)} = \mathbf{B}^{(m)} \mathbf{u}^{(m)} \quad \text{with} \quad k = 1, 2, 3, 4,$$
$${}^{k} \mathbf{B}^{(m)} = \begin{bmatrix} {}^{k} \mathbf{B}_{1} & {}^{k} \mathbf{B}_{2} & {}^{k} \mathbf{B}_{3} & {}^{k} \mathbf{B}_{4} \end{bmatrix},$$
$$\mathbf{u}^{(m)} = \begin{bmatrix} \mathbf{u}_{1} & \mathbf{u}_{2} & \mathbf{u}_{3} & \mathbf{u}_{4} \end{bmatrix}^{T}.$$

 The 4-node 2D element has piecewise constant strain fields defined for sub-triangles.

✓ Piecewise linear shape functions (on T1):

$$h_1 = (1-2r-s)/4, \quad h_2 = (1+2r-s)/4,$$

 $h_3 = (1+s)/4, \quad h_4 = (1+s)/4.$
S T: Sub-triangles

Smoothing operation

$$\tilde{\mathbf{\varepsilon}}_{k} = \int_{\Omega^{(k)}} \mathbf{\varepsilon}(\mathbf{x}) \Phi_{k}(\mathbf{x}) d\Omega.$$

✓ valid for strains with constant values.

The SSE method for the 4-node element

The 4-node element with the SSE method

Step 2 of 2

Construction of the smoothed strain field through Gauss points.

T: Sub-triangles, G: Gauss points

Strain smoothing within elements $\overline{\mathbf{\epsilon}}_{1} = \frac{1}{A_{4}^{(m)} + A_{1}^{(m)}} (A_{4}^{(m)} \hat{\mathbf{\epsilon}}^{(4)} + A_{1}^{(m)} \hat{\mathbf{\epsilon}}^{(1)}) \text{ for G1,}$ $\overline{\mathbf{\epsilon}}_{2} = \frac{1}{A_{1}^{(m)} + A_{2}^{(m)}} (A_{1}^{(m)} \hat{\mathbf{\epsilon}}^{(1)} + A_{2}^{(m)} \hat{\mathbf{\epsilon}}^{(2)}) \text{ for G2,}$ $\overline{\mathbf{\epsilon}}_{3} = \frac{1}{A_{2}^{(m)} + A_{3}^{(m)}} (A_{2}^{(m)} \hat{\mathbf{\epsilon}}^{(2)} + A_{3}^{(m)} \hat{\mathbf{\epsilon}}^{(3)}) \text{ for G3,}$ $\overline{\mathbf{\epsilon}}_{4} = \frac{1}{A_{3}^{(m)} + A_{4}^{(m)}} (A_{3}^{(m)} \hat{\mathbf{\epsilon}}^{(3)} + A_{4}^{(m)} \hat{\mathbf{\epsilon}}^{(4)}) \text{ for G4.}$

Smoothed strain field

$$\overline{\mathbf{\epsilon}}^{(m)} = \sum_{i=1}^{4} \overline{h_i}(r, s) \overline{\mathbf{\epsilon}}_i \quad \text{with} \quad \overline{h_i}(r, s) = \frac{3}{4} \left(\frac{1}{\sqrt{3}} - \eta_i r \right) \left(\frac{1}{\sqrt{3}} - \zeta_i r \right),$$
$$\begin{bmatrix} \eta_1 & \eta_2 & \eta_3 & \eta_4 \end{bmatrix} = \begin{bmatrix} 1 & -1 & -1 & 1 \end{bmatrix}, \quad \begin{bmatrix} \zeta_1 & \zeta_2 & \zeta_3 & \zeta_4 \end{bmatrix} = \begin{bmatrix} 1 & 1 & -1 & -1 \end{bmatrix}.$$

Numerical examples (2D)

Finite elements considered

- Q4 : 4-node quadrilateral element
- ES-Q4 : 4-node quadrilateral element with the edge-based S-FEM
- ICM-Q4 : incompatible modes 4-node quadrilateral element
- SSE-Q4 (proposed) : strain-smoothed 4-node quadrilateral element (SSE method)

Evaluation method

• Convergence curves obtained using the energy norm $E_e^2 = \frac{\left\| \mathbf{u}_{ref} \right\|_e^2 - \left\| \mathbf{u}_h \right\|_e^2}{\left\| \mathbf{u}_{ref} \right\|^2}$ with $\left\| \mathbf{u} \right\|_e^2 = \int_{\Omega} \varepsilon^T \sigma d\Omega$.

Displacements and stresses.

Reference solution

Reference solutions are calculated using a <u>64×64</u> regular mesh of <u>9-node 2D solid elements</u>.

	Reference	Test elements	Ν
	50	18	2
Degrees of	162	50	4
Degrees of	578	162	8
freedom	2,178	578	16
(DOFs) per N	33,282	8,450	64

1) Cook's skew beam problem

Force

Distributed shearing force $f_s = 1/16$.

Boundary condition

Left edge is clamped.

- Material property (plane stress condition) $E = 3 \times 10^7$, v = 0.3.
- Regular and distorted meshes (*N*×*N* elements)
 N = 2, 4, 8, 16.

Numerical examples (2D)

1) Cook's skew beam problem

• Normalized horizontal displacements (u_h / u_{ref}) at point A.

Numerical examples (2D)

1) Cook's skew beam problem

Computational efficiency curves.

- Computation times taken from obtaining stiffness matrices to solving linear equations are measured.
- Computations are performed in a PC with Intel Core i7-6700, 3.40GHz CPU and 64GB RAM. ٠
- The CSR format is used for storing matrices and Intel MKL PARDISO is used for solving linear equations. ٠

48

16

 $f_s = 1/16$

X

2) Block under complex forces problem

Force

Compressive body force $f_B = (y+1)^2$ and

eccentric tensile traction $f_s = 3.2$.

Boundary condition

The block is supported along its bottom.

- Material property (plane stress condition) $E = 3 \times 10^7$, $\nu = 0.25$.
- Regular and distorted meshes (N×N elements)
 N = 2, 4, 8, 16.

Numerical examples (2D)

2) Block under complex forces problem

von Mises stress distributions for the regular mesh (N = 16).

ES-Q4

SSE-Q4 (proposed)

Topic 3

Strain-smoothed MITC3+ shell element for geometric nonlinear analysis

3-node triangular shell element

Shell behaviors

* Asymptotic behaviors

- The behaviors of shell converges to a specific limit state as the thickness becomes small.
- Three different asymptotic categories:
 - ✓ Bending-dominated, membrane-dominated, mixed behaviors.

Locking

- The accuracy of the solution deteriorates rapidly as the thickness becomes small.
- It happens when the finite elements discretization cannot accurately represent pure bending displacement fields.
- Membrane locking, shear locking.

The MITC3+ shell finite element.

- The shell element has an internal bubble node at element center.
- The bubble node only has two rotational DOFs with a cubic bubble function.
- Assumed covariant transverse shear strain fields are employed to alleviate shear locking.
- Its excellent bending behavior is demonstrated through various linear and nonlinear analyses.

✤ In membrane problem

DISP3 = MITC3+

DISP3:

displacement-based 3-node shell element (no treatment for alleviating shear locking).

MITC3+:

3-node shell element with the MITC method.

Reference is obtained using the **MITC9** shell elements.

***** Geometry & displacement interpolations

•
$${}^{t}\mathbf{x}(r,s,\xi) = {}^{t}\mathbf{x}_{m} + \xi {}^{t}\mathbf{x}_{b}$$
 with ${}^{t}\mathbf{x}_{m} = \sum_{i=1}^{3} h_{i}(r,s){}^{t}\mathbf{x}_{i}$, ${}^{t}\mathbf{x}_{b} = \frac{1}{2}\sum_{i=1}^{4} a_{i}f_{i}(r,s){}^{t}\mathbf{V}_{n}^{i}$.

• Shape functions: $h_1 = 1 - r - s$, $h_2 = r$, $h_3 = s$,

$$f_1 = h_1 - \frac{1}{3}f_4$$
, $f_2 = h_2 - \frac{1}{3}f_4$, $f_3 = h_3 - \frac{1}{3}f_4$, $f_4 = 27rs(1 - r - s)$

•
$$\mathbf{u}(r,s,\xi) = \mathbf{u}_m + \xi(\mathbf{u}_{b1} + \mathbf{u}_{b2})$$

 ${}^{t}\mathbf{x}$: position vector in the configuration at time *t*.

with
$$\mathbf{u}_m = \sum_{i=1}^3 h_i(r,s)\mathbf{u}_i$$
,

u : incremental displacement vector from the configuration at time t to that at time $t + \Delta t$.

$$\mathbf{u}_{b1} = \frac{1}{2} \sum_{i=1}^{4} a_i f_i(r, s) \Big(-\alpha_i^{\ t} \mathbf{V}_2^i + \beta_i^{\ t} \mathbf{V}_1^i \Big),$$
$$\mathbf{u}_{b2} = -\frac{1}{4} \sum_{i=1}^{4} a_i f_i(r, s) \Big[\Big(\alpha_i^2 + \beta_i^2 \Big)^t \mathbf{V}_n^i \Big].$$

•
$$\mathbf{u}_l = \mathbf{u}_m + \xi \mathbf{u}_{b1}, \quad \mathbf{u}_q = \xi \mathbf{u}_{b2}.$$

Geometry of the MITC3+ shell element 53/89

***** Green-Lagrange strain components

•
$${}_{0}^{t} \mathcal{E}_{ij} = \frac{1}{2} \left({}^{t} \mathbf{g}_{i} \cdot {}^{t} \mathbf{g}_{j} - {}^{0} \mathbf{g}_{i} \cdot {}^{0} \mathbf{g}_{j} \right)$$
 with $i, j = 1, 2, 3.$

• In-plane strain components (*i*, *j*=1, 2): ${}_{0}^{t}\varepsilon_{ij} = {}_{0}^{t}\varepsilon_{ij}^{m} + \xi_{0}^{t}\varepsilon_{ij}^{b1} + \xi_{0}^{2}\varepsilon_{ij}^{b2}$

where
$${}_{0}^{t} \varepsilon_{ij}^{m} = \frac{1}{2} \left({}^{t} \mathbf{x}_{m,i} \cdot {}^{t} \mathbf{x}_{m,j} - {}^{0} \mathbf{x}_{m,i} \cdot {}^{0} \mathbf{x}_{m,j} \right), {}_{0}^{t} \varepsilon_{ij}^{b2} = \frac{1}{2} \left({}^{t} \mathbf{x}_{b,i} \cdot {}^{t} \mathbf{x}_{b,j} - {}^{0} \mathbf{x}_{b,i} \cdot {}^{0} \mathbf{x}_{b,j} \right), {}_{0}^{t} \varepsilon_{ij}^{b1} = \frac{1}{2} \left[\left({}^{t} \mathbf{x}_{m,i} \cdot {}^{t} \mathbf{x}_{b,j} + {}^{t} \mathbf{x}_{m,j} \cdot {}^{t} \mathbf{x}_{b,i} \right) - \left({}^{0} \mathbf{x}_{m,i} \cdot {}^{0} \mathbf{x}_{b,j} + {}^{0} \mathbf{x}_{m,j} \cdot {}^{0} \mathbf{x}_{b,i} \right) \right], {}_{0}^{t} \varepsilon_{ij}^{b1} = \frac{1}{2} \left[\left({}^{t} \mathbf{x}_{m,i} \cdot {}^{t} \mathbf{x}_{b,j} + {}^{t} \mathbf{x}_{m,j} \cdot {}^{t} \mathbf{x}_{b,i} \right) - \left({}^{0} \mathbf{x}_{m,i} \cdot {}^{0} \mathbf{x}_{b,j} + {}^{0} \mathbf{x}_{m,j} \cdot {}^{0} \mathbf{x}_{b,i} \right) \right], {}_{0}^{t} \varepsilon_{ij}^{b1} = \frac{1}{2} \left[\left({}^{t} \mathbf{x}_{m,i} \cdot {}^{t} \mathbf{x}_{b,j} + {}^{t} \mathbf{x}_{m,j} \cdot {}^{t} \mathbf{x}_{b,i} \right) - \left({}^{0} \mathbf{x}_{m,i} \cdot {}^{0} \mathbf{x}_{b,j} + {}^{0} \mathbf{x}_{m,j} \cdot {}^{0} \mathbf{x}_{b,i} \right) \right], {}_{0}^{t} \varepsilon_{ij}^{b1} = \frac{1}{2} \left[\left({}^{t} \mathbf{x}_{m,i} \cdot {}^{t} \mathbf{x}_{b,j} + {}^{t} \mathbf{x}_{m,j} \cdot {}^{t} \mathbf{x}_{b,i} \right) - \left({}^{0} \mathbf{x}_{m,i} \cdot {}^{0} \mathbf{x}_{b,j} + {}^{0} \mathbf{x}_{m,j} \cdot {}^{0} \mathbf{x}_{b,i} \right) \right], {}_{0}^{t} \varepsilon_{ij}^{b1} = \frac{1}{2} \left[\left({}^{t} \mathbf{x}_{m,i} \cdot {}^{t} \mathbf{x}_{b,j} + {}^{t} \mathbf{x}_{m,j} \cdot {}^{t} \mathbf{x}_{b,i} \right) - \left({}^{0} \mathbf{x}_{m,i} \cdot {}^{0} \mathbf{x}_{b,j} + {}^{0} \mathbf{x}_{m,j} \cdot {}^{0} \mathbf{x}_{b,i} \right) \right], {}_{0}^{t} \varepsilon_{ij}^{b1} = \frac{1}{2} \left[\left({}^{t} \mathbf{x}_{m,i} \cdot {}^{t} \mathbf{x}_{b,i} + {}^{t} \mathbf{x}_{m,j} \cdot {}^{t} \mathbf{x}_{b,i} \right] - \left({}^{0} \mathbf{x}_{m,i} \cdot {}^{0} \mathbf{x}_{m,j} \cdot {}^{0} \mathbf{x}_{m,i} \right], {}_{0}^{t} \varepsilon_{ij}^{b1} = \frac{1}{2} \left[\left({}^{t} \mathbf{x}_{m,i} \cdot {}^{t} \mathbf{x}_{m,i} + {}^{t} \mathbf{x}_{m,j} \cdot {}^{t} \mathbf{x}_{m,i} \cdot {}^{t} \mathbf{x}_{m,i} \right], {}_{0}^{t} \varepsilon_{ij}^{b1} = \frac{1}{2} \left[\left({}^{t} \mathbf{x}_{m,i} \cdot {}^{t} \mathbf{x}_{m,i} \cdot {}^{t} \mathbf{x}_{m,i} \cdot {}^{t} \mathbf{x}_{m,j} \cdot {}^{t} \mathbf{x}_{m,i} \right], {}_{0}^{t} \varepsilon_{ij}^{b1} = \frac{1}{2} \left[\left({}^{t} \mathbf{x}_{m,i} \cdot {}^{t} \mathbf{x}_{m,i} \right], {}_{0}^{t} \varepsilon_{ij}^{b1} = \frac{1}{2} \left[\left({}^{t} \mathbf{x}_{m,i} \cdot {}^{t} \mathbf{x}_{m,i} \cdot {}^{$$

•
$$_{0}\varepsilon_{ij} = {}^{t+\Delta t}_{0}\varepsilon_{ij} - {}^{t}_{0}\varepsilon_{ij} = \frac{1}{2}(\mathbf{u}_{,i} \cdot {}^{t}\mathbf{g}_{j} + {}^{t}\mathbf{g}_{i} \cdot \mathbf{u}_{,j} + \mathbf{u}_{,i} \cdot \mathbf{u}_{,j})$$
 with $i, j = 1, 2, 3$.

•
$$_{0}\varepsilon_{ij} = _{0}e_{ij} + _{0}\eta_{ij}$$
 with $_{0}e_{ij} = \frac{1}{2}(\frac{\partial \mathbf{u}_{l}}{\partial r_{i}} {}^{t}\mathbf{g}_{j} + {}^{t}\mathbf{g}_{i}\frac{\partial \mathbf{u}_{l}}{\partial r_{j}}), \quad _{0}\eta_{ij} = \frac{1}{2}\left(\frac{\partial \mathbf{u}_{l}}{\partial r_{i}} \cdot \frac{\partial \mathbf{u}_{l}}{\partial r_{j}}\right) + \frac{1}{2}\left(\frac{\partial \mathbf{u}_{q}}{\partial r_{i}} {}^{t}\mathbf{g}_{j} + {}^{t}\mathbf{g}_{i}\frac{\partial \mathbf{u}_{q}}{\partial r_{j}}\right)$

Incremental strain components (continued)

• In-plane strain components (i, j = 1, 2): ${}_{0}\varepsilon_{ij} = {}_{0}\varepsilon_{ij}^{m} + \xi_{0}\varepsilon_{ij}^{b1} + \xi_{0}^{2}\varepsilon_{ij}^{b2}$.

•
$${}_{0}\varepsilon_{ij}^{m} = {}_{0}e_{ij}^{m} + {}_{0}\eta_{ij}^{m}, {}_{0}\varepsilon_{ij}^{b1} = {}_{0}e_{ij}^{b1} + {}_{0}\eta_{ij}^{b1}, {}_{0}\varepsilon_{ij}^{b2} = {}_{0}e_{ij}^{b2} + {}_{0}\eta_{ij}^{b2}.$$

•
$$_{0}e_{ij} = _{0}e_{ij}^{m} + \xi_{0}e_{ij}^{b1} + \xi^{2}_{0}e_{ij}^{b2}$$
 with $_{0}e_{ij}^{m} = \frac{1}{2}(^{t}\mathbf{x}_{m,i}\cdot\mathbf{u}_{m,j} + ^{t}\mathbf{x}_{m,j}\cdot\mathbf{u}_{m,i}),$
 $_{0}e_{ij}^{b1} = \frac{1}{2}(^{t}\mathbf{x}_{m,i}\cdot\mathbf{u}_{b1,j} + ^{t}\mathbf{x}_{m,j}\cdot\mathbf{u}_{b1,i} + ^{t}\mathbf{x}_{b,i}\cdot\mathbf{u}_{m,j} + ^{t}\mathbf{x}_{b,j}\cdot\mathbf{u}_{m,i}),$
 $_{0}e_{ij}^{b2} = \frac{1}{2}(^{t}\mathbf{x}_{b,i}\cdot\mathbf{u}_{b1,j} + ^{t}\mathbf{x}_{b,j}\cdot\mathbf{u}_{b1,i}).$

•
$$_{0}\eta_{ij} = _{0}\eta_{ij}^{m} + \xi_{0}\eta_{ij}^{b1} + \xi_{0}^{2}\eta_{ij}^{b2}$$
 with $_{0}\eta_{ij}^{m} = \frac{1}{2}\mathbf{u}_{m,i}\cdot\mathbf{u}_{m,j},$
 $_{0}\eta_{ij}^{b1} = \frac{1}{2}(\mathbf{u}_{m,i}\cdot\mathbf{u}_{b1,j} + \mathbf{u}_{m,j}\cdot\mathbf{u}_{b1,i} + {}^{t}\mathbf{x}_{m,i}\cdot\mathbf{u}_{b2,j} + {}^{t}\mathbf{x}_{m,j}\cdot\mathbf{u}_{b2,i}),$
 $_{0}\eta_{ij}^{b2} = \frac{1}{2}(\mathbf{u}_{b1,i}\cdot\mathbf{u}_{b1,j} + {}^{t}\mathbf{x}_{b,i}\cdot\mathbf{u}_{b2,j} + {}^{t}\mathbf{x}_{b,j}\cdot\mathbf{u}_{b2,i}).$

Assumed transverse shear strain fields

•
$${}_{0}\varepsilon_{i3}^{MITC3+} = {}_{0}e_{i3}^{MITC3+} + {}_{0}\eta_{i3}^{MITC3+}$$
 with $i, j = 1, 2, 3$.

where
$${}_{0}\varepsilon_{13}^{MITC3+} = \frac{2}{3} \left({}_{0}\varepsilon_{13}^{B} - \frac{1}{2} {}_{0}\varepsilon_{23}^{B} \right) + \frac{1}{3} \left({}_{0}\varepsilon_{13}^{A} + {}_{0}\varepsilon_{23}^{A} \right) + \frac{1}{3} {}_{0}\hat{c}(3s-1),$$

 ${}_{0}\varepsilon_{23}^{MITC3+} = \frac{2}{3} \left({}_{0}\varepsilon_{23}^{C} - \frac{1}{2} {}_{0}\varepsilon_{13}^{C} \right) + \frac{1}{3} \left({}_{0}\varepsilon_{13}^{A} + {}_{0}\varepsilon_{23}^{A} \right) + \frac{1}{3} {}_{0}\hat{c}(1-3r),$

and
$${}_{0}\hat{c} = {}_{0}\varepsilon^{F}_{13} - {}_{0}\varepsilon^{D}_{13} - {}_{0}\varepsilon^{F}_{23} + {}_{0}\varepsilon^{E}_{23}.$$

The MITC3+ shell element with the SSE method

Step 1 of 4

Decomposition of strain components.

> The covariant in-plane strain components (i, j = 1, 2) can be decomposed as follows

$${}_{0}\varepsilon_{ij} = {}_{0}\varepsilon_{ij}^{m} + \xi_{0}\varepsilon_{ij}^{b1} + \xi^{2}_{0}\varepsilon_{ij}^{b2} \quad \text{with} \quad {}_{0}\varepsilon_{ij}^{m} = {}_{0}e_{ij}^{m} + {}_{0}\eta_{ij}^{m}$$

where
$$_{0}e_{ij}^{m} = \frac{1}{2}\left({}^{t}\mathbf{x}_{m,i}\cdot\mathbf{u}_{m,j} + {}^{t}\mathbf{x}_{m,j}\cdot\mathbf{u}_{m,i}\right), \quad _{0}\eta_{ij}^{m} = \frac{1}{2}\mathbf{u}_{m,i}\cdot\mathbf{u}_{m,j}.$$

The MITC3+ shell element with the SSE method

$$\overline{A}^{(k)} = (\mathbf{n}^{(e)} \cdot \mathbf{n}^{(k)}) A^{(k)} \text{ with } \mathbf{n}^{(e)} = {}^{(e)}\mathbf{g}_3 / \|{}^{(e)}\mathbf{g}_3\|, \mathbf{n}^{(k)} = {}^{(k)}\mathbf{g}_3 / \|{}^{(k)}\mathbf{g}_3\|.$$

Smoothed strain

$${}_{0}\hat{\varepsilon}_{ij}^{m,(k)} = \frac{1}{A^{(e)} + \overline{A}^{(k)}} ({}_{0}\varepsilon_{ij}^{m,(e)}A^{(e)} + {}_{0}\overline{\varepsilon}_{ij}^{m,(k)}\overline{A}^{(k)}) \text{ with } i, j = 1, 2.$$

If there is no neighboring element,

$${}_0\hat{\varepsilon}^{m,(k)}_{ij}={}_0\varepsilon^{m,(e)}_{ij}.$$

The MITC3+ shell element with the SSE method

Step 4 of 4

Construction of the smoothed strain field through Gauss points.

$${}_{0}\varepsilon_{ij}^{m,(A)} = \frac{1}{2} ({}_{0}\hat{\varepsilon}_{ij}^{m,(3)} + {}_{0}\hat{\varepsilon}_{ij}^{m,(1)}), \qquad {}_{0}\varepsilon_{ij}^{m,(B)} = \frac{1}{2} ({}_{0}\hat{\varepsilon}_{ij}^{m,(1)} + {}_{0}\hat{\varepsilon}_{ij}^{m,(2)})$$
$${}_{0}\varepsilon_{ij}^{m,(C)} = \frac{1}{2} ({}_{0}\hat{\varepsilon}_{ij}^{m,(2)} + {}_{0}\hat{\varepsilon}_{ij}^{m,(3)}) \quad \text{with} \quad i, j = 1, 2.$$

Smoothed covariant membrane strain field

$${}_{0}\varepsilon_{ij}^{m,SSE} = \left[1 - \frac{1}{q-p}(r+s-2p)\right]_{0}\varepsilon_{ij}^{m,(A)} + \frac{r-p}{q-p} {}_{0}\varepsilon_{ij}^{m,(B)} + \frac{s-p}{q-p} {}_{0}\varepsilon_{ij}^{m,(C)}$$

with *i*, *i* = 1, 2,

- The smoothed covariant membrane strain replaces the original covariant membrane strain.
- For the covariant transverse shear strains, we adopt the assumed strains of the MITC3+ shell element.

Finite elements considered (flat shell elements)

Element	Description
Allman	 A flat shell element that combines a triangular membrane element with Allman's drilling DOFs and the discrete Kirchhoff-Mindlin triangular (DKMT) plate element are combined. It requires 18 DOFs for an element.
ANDES (OPT)	 A flat shell element that combines the assumed natural deviatoric strain (ANDES) triangular membrane element with 3 drilling DOFs and optimal parameters and the DKMT plate element. It has 18 DOFs for an element.
Shin and Lee	 As a flat shell element, the edge-based strain smoothing method is applied to the ANDES formulation-based membrane element with 3 drilling DOFs, and the DKMT plate element is combined. New values of the free parameters in the ANDES formulation are introduced. It requires 18 DOFs for an element.

Finite elements considered (curved shell elements)

Element	Description
MITC3+	 A continuum mechanics based 3-node shell element with a bubble node. The bubble node has 2 rotational DOFs which can be condensed out on the element level. It has 15 DOFs for an element.
Enriched MITC3+	 The MITC3+ shell element enriched in membrane displacements by interpolation covers. 4 DOFs per node are added and thus the element has 27 DOFs for an element in total.

Evaluation method

- Convergence curves obtained using the s-norm $E_h = \frac{\left\|\mathbf{u}_{ref} \mathbf{u}_h\right\|_s^2}{\left\|\mathbf{u}_{ref}\right\|^2}$ with $\left\|\mathbf{u}_{ref} \mathbf{u}_h\right\|_s^2 = \int_{\Omega} \Delta \varepsilon^T \Delta \tau d\Omega$.
- Displacements and stresses.

✤ Reference solution

Reference solutions are calculated using a <u>64×64</u> regular mesh of the <u>MITC9 shell elements</u>.

1) Cook's skew beam problem

Force

Distributed shearing force p = 1/16.

Boundary condition

Left edge is clamped.

Material property

E = 1, v = 1/3.

Two patterns of meshes (N×N elements)

N = 2, 4, 8, 16, 32.

1) Cook's skew beam problem

Normalized vertical displacements (v_h / v_{ref})

at point A for Mesh I.

The total number of DOFs when

increasing the N.

2) Hyperbolic paraboloid shell problem

Problem description

Normalized vertical displacements
 (w_h / w_{ref}) at point *D*.

Force

Self-weight loading $f_z = 8$.

Boundary condition
 One end is clamped.

Material property & Thickness

 $E = 2 \times 10^{11}$, v = 0.3, t = 0.001.

• **Regular meshes (** $N \times 2N$ elements)

N = 2, 4, 8, 16, 24.

3) Scordelis-Lo roof shell problem

Force

Self-weight loading $f_z = 90$.

Boundary condition

The shell is supported by rigid diaphragms.

Material property & Thickness

 $E = 4.32 \times 10^8$, v = 0, t = 0.25, 0.025, 0.0025.

Two patterns of meshes (N×N elements)

N = 4, 8, 16, 32.

3) Scordelis-Lo roof shell problem

von Mises stress distributions for Mesh I when t = 0.25.

3) Scordelis-Lo roof shell problem

Computational efficiency curves for Mesh II when t = 0.025.

- Computation times taken from obtaining stiffness matrices to solving linear equations are measured.
- Computations are performed in a PC with Intel Core i7-6700, 3.40GHz CPU and 64GB RAM.
- A symmetric skyline solver is used for solving linear equations.

1) Cantilever beam subjected to a tip moment problem

Force

Tip moment $M_{\text{max}} = 10\pi$.

Boundary condition

Left edge is clamped.

Material property & Thickness

 $E = 1.2 \times 10^3$, v = 0.2, t = 1.

- 20 load steps
- Regular and distorted 20×2 meshes of triangular elements.
- Regular 40×4 meshes of MITC9 elements for reference.

1) Cantilever beam subjected to a tip moment problem

• Deformed configurations at the load levels $M / M_{max} = 0.25, 0.5, 0.75, 1.0$ for regular mesh.

MITC3+

Smoothed MITC3+ (proposed)

Reference

2) Slit annular plate subjected to a lifting line force problem

Force

Shearing force $p_{\text{max}} = 0.8$.

Boundary condition

One end is clamped.

Material property & Thickness

$$E = 2.1 \times 10^7$$
, $v = 0$, $t = 0.03$.

- 10 load steps
- 6×30 mesh of triangular elements.
- 12×60 mesh of MITC9 elements for reference.

2) Slit annular plate subjected to a lifting

line force problem

- Load-displacement curves
 - (w_B and w_C).

Topic 4

Acoustic radiation analysis using the strain-smoothed triangular element

3-node triangular2D solid element
Acoustic radiation problem

✤ Formulation

- Helmholtz equation (reduced wave equation): $\Delta p + k^2 p = 0$.
- The Sommerfeld radiation condition for exterior acoustic problem: $\lim_{r \to \infty} r^{\frac{d-1}{2}} \left(\frac{\partial p}{\partial r} + jkp \right) = 0.$
- Galerkin weak form of this problem:

$$-\int_{\Omega} \nabla w \cdot \nabla p d\Omega + k^2 \int_{\Omega} w \cdot p d\Omega - j \rho \omega \int_{\Gamma_N} w \cdot v_n d\Omega - \int_{\Gamma_B} w \cdot M \cdot p d\Gamma = 0.$$

Finite element formulation:

$$\left[\mathbf{K}-k^{2}\mathbf{M}+\mathbf{K}_{s}\right]\mathbf{p}=-j\rho\omega\mathbf{F},$$

where

$$\mathbf{K} = \sum_{m=1}^{e} \int_{\Omega^{(m)}} \mathbf{B}^{(m)T} \mathbf{B}^{(m)} d\Omega, \quad \mathbf{M} = \sum_{m=1}^{e} \int_{\Omega^{(m)}} \mathbf{N}^{T} \cdot \mathbf{N} \, d\Omega, \quad \mathbf{F} = \sum_{m=1}^{e} \int_{\Gamma^{(m)}_{N}} \mathbf{N}^{T} \cdot \mathbf{v}_{\mathbf{n}} \, d\Gamma.$$
$$\mathbf{B}^{(m)} \text{ is the differential operator matrix of an element.}$$

1) Circumferentially harmonic radiation from a cylinder

Force

Pressure $p(\theta) = \cos(4\theta)$ at $r = r_1$.

Boundary condition

Dirichlet to Neumann (DtN) condition along Γ_a .

Material property

Density: $\rho = 1.225 \text{ kg/m}^3$,

Wave speed: c = 340 m/s.

Wave numbers: q = 10, 16, 22.

Regular meshes (*N*×12*N* elements)
 N = 2, 3, 4, 10.

1) Circumferentially harmonic radiation from a cylinder

Pressure distributions for the mesh (N = 3).

Analytical solution:

$$p(r,\theta) = \frac{H_4^{(1)}(kr)}{H_4^{(1)}(kr_1)}\cos(4\theta).$$

q (wave number) = **10**, 16, 22

1) Circumferentially harmonic radiation from a cylinder

Pressure distributions for the mesh (N = 2, 3).

1) Circumferentially harmonic radiation from a cylinder

Pressure distributions for the mesh (N = 3, 4).

1) Circumferentially harmonic radiation from a cylinder

Pressure distributions for the mesh (N = 4, 10).

Topic 5

Variational formulation for the strain-smoothed element method

In collaboration with

Ph.D. Jongho Park,

Department of Mathematical Sciences, KAIST.

Abstract form

<u>The standard FEM</u> for linear elasticity:

find $\mathbf{u}_h \in V_h$ such that

 $a(\mathbf{u}_h, \mathbf{v}) = f(\mathbf{v}), \quad \forall \mathbf{v} \in V_h$ with $a(\mathbf{u}, \mathbf{v}) = \int_{\Omega} \mathbf{D} \boldsymbol{\varepsilon}[\mathbf{u}] : \boldsymbol{\varepsilon}[\mathbf{v}] d\Omega$. <u>The SSE method</u> for linear elasticity: find $\overline{\mathbf{u}}_h \in V_h$ such that $\overline{a}(\overline{\mathbf{u}}_h, \mathbf{v}) = f(\mathbf{v}), \quad \forall \mathbf{v} \in V_h$ with $\overline{a}(\mathbf{u}, \mathbf{v}) = \int_{\Omega} \mathbf{D}\overline{\mathbf{\varepsilon}}[\mathbf{u}] : \overline{\mathbf{\varepsilon}}[\mathbf{v}] d\Omega$.

Setting (mesh, functional space)

- *P_n(K)*: the collection of all polynomials of degree less than or equal to *n* (nonnegative integer) on a subregion *K* of Ω.
- T_h : a geometrically conforming and quasi-uniform triangulation of Ω with the maximum element diameter h > 0.
- Discrete displacement space: $V_h = \{ \mathbf{u} \in V : \mathbf{u} |_T \in (P_1(T))^2 \text{ for all } T \in \mathcal{T}_h \}.$
- Discrete strain/stress space: $W_h = \left\{ \boldsymbol{\varepsilon} \in W : \boldsymbol{\varepsilon} |_T \in (P_0(T))^2 \text{ for all } T \in \mathcal{T}_h \right\}.$

Original approach of the SSE method

- SSE smoothing operator $S_h: W_h \to \overline{W}_h$.
- Discrete strain/stress space: $\overline{W}_h = \{\overline{\mathbf{\epsilon}} \in W : \overline{\mathbf{\epsilon}}|_T \in (P_1(T))^3 \text{ for all } T \in \mathcal{T}_h\}.$

Take any element $T \in T_h$. There exist three elements T_1 , T_2 , and T_3 in T_h adjacent to T.

- Intermediate smoothed strains (i = 1, 2, 3): $\hat{\boldsymbol{\varepsilon}}^{(i)} = \frac{1}{|T \cup T_i|} \int_{T \cup T_i} \boldsymbol{\varepsilon} d\Omega$.
- The smoothed strains at three Gauss integration points (i = 1, 2, 3):

$$\overline{\mathbf{\epsilon}}(Gi) = \frac{1}{2} (\hat{\mathbf{\epsilon}}^{(j)} + \hat{\mathbf{\epsilon}}^{(k)}) \text{ with } \{i, j, k\} = \{1, 2, 3\}.$$

• The smoothed strain field $\overline{\epsilon}$ is uniquely determined on T by <u>linear interpolation</u>.

• Bilinear form:
$$\overline{a}(\mathbf{u}, \mathbf{v}) = \int_{\Omega} \mathbf{D} S_{h} \boldsymbol{\varepsilon}[\mathbf{u}] : S_{h} \boldsymbol{\varepsilon}[\mathbf{v}] d\Omega, \quad \mathbf{u}, \mathbf{v} \in V_{h}.$$

Original approach

• The smoothed strains at three Gauss integration points (*i* = 1, 2, 3):

$$\overline{\mathbf{\epsilon}}(Gi) = \frac{1}{2} (\hat{\mathbf{\epsilon}}^{(j)} + \hat{\mathbf{\epsilon}}^{(k)}) \quad \text{with} \quad \{i, j, k\} = \{1, 2, 3\}.$$

• The smoothed strain field $\overline{\epsilon}$ is uniquely determined on T by <u>linear interpolation</u>.

$$\overline{\mathbf{\epsilon}}^{(e)} = \left[1 - \frac{1}{q-p}(r+s-2p)\right]\overline{\mathbf{\epsilon}}(G1) + \frac{r-p}{q-p}\overline{\mathbf{\epsilon}}(G2) + \frac{s-p}{q-p}\overline{\mathbf{\epsilon}}(G3).$$

Alternative view: twice-projected strain

- It does not imply modification of the method.
- The alternative view is used only in the process of establishing variational formulation and convergence theory.

Alternative view: twice-projected strain

- SSE smoothing operator $P_{k,h}: W \to W_{k,h}$
- $(P_{k,h}\varepsilon)(x) = \frac{1}{|T|} \int_T \varepsilon d\Omega, \quad \varepsilon \in W, \quad T \in T_{k,h}, \quad x \in T.$
- Discrete strain/stress space: $W_{k,h} = \left\{ \varepsilon \in W : \varepsilon |_{T} \in (P_0(T))^3 \text{ for all } T \in \mathcal{T}_{k,h} \right\}.$
- Bilinear form: $\overline{a}(\mathbf{u}, \mathbf{v}) = \int_{\Omega} \mathbf{D} P_{2,h} P_{1,h} \boldsymbol{\varepsilon}[\mathbf{u}] : P_{2,h} P_{1,h} \boldsymbol{\varepsilon}[\mathbf{v}] d\Omega, \quad \mathbf{u}, \mathbf{v} \in V_h.$
- Lemma 1. Let A be a 3×3 matrix. For k = l, 2, the piecewise smoothing operator $P_{k,h}$ commutes with **A**, *i.e.*, $P_{k,h}(\mathbf{A}\boldsymbol{\varepsilon}) = \mathbf{A}P_{k,h}\boldsymbol{\varepsilon}$, $\boldsymbol{\varepsilon} \in W$.
- Lemma 2. For k = 1, 2, the piecewise smoothing operator $P_{k,h}$ is the $(L^2(\Omega))^3$ -orthogonal projection onto $W_{k,h}$, i.e., $P_{k,h}^2 = P_{k,h}$ and $\int_{\Omega} P_{k,h} \varepsilon : \delta d\Omega = \int_{\Omega} \varepsilon : P_{k,h} \delta d\Omega$, $\varepsilon, \delta \in W$.
- **Theorem 3.** Two bilinear forms are identical, i.e., it satisfies that $\int_{\Omega} \mathbf{D} S_h \mathbf{\epsilon}[\mathbf{u}] : S_h \mathbf{\epsilon}[\mathbf{v}] d\Omega = \int_{\Omega} \mathbf{D} P_{2,h} P_{1,h} \mathbf{\epsilon}[\mathbf{u}] : P_{2,h} P_{1,h} \mathbf{\epsilon}[\mathbf{v}] d\Omega, \quad \mathbf{u}, \mathbf{v} \in V_h.$
- **Proposition 4.** The SSE method has a unique solution.

Variational formulation

Constrained minimization problem:

 $\min_{\mathbf{u}\in V, \sigma_1\in W_1, \sigma_2\in W_2} \left\{ \frac{1}{2} \int_{\Omega} \boldsymbol{\sigma}_2 : \mathbf{D}^{-1} \boldsymbol{\sigma}_2 \, d\Omega - f(\mathbf{u}) \right\} \text{ subject to } \boldsymbol{\sigma}_1 = \mathbf{D} \mathbf{B} \mathbf{u} \,, \, \boldsymbol{\sigma}_1 = \boldsymbol{\sigma}_2 \,.$

- Saddle point problem (using the method of Lagrange multipliers): $\min_{\mathbf{u}\in V, \sigma_1\in W_1, \sigma_2\in W_2} \max_{\boldsymbol{\epsilon}_1\in W_1, \boldsymbol{\epsilon}_2\in W_2} \left\{ \frac{1}{2} \int_{\Omega} \boldsymbol{\sigma}_2 : \mathbf{D}^{-1}\boldsymbol{\sigma}_2 \, d\Omega - f(\mathbf{u}) + \int_{\Omega} (\mathbf{D}\mathbf{B}\mathbf{u} - \boldsymbol{\sigma}_1) : \boldsymbol{\epsilon}_1 \, d\Omega + \int_{\Omega} (\boldsymbol{\sigma}_1 - \boldsymbol{\sigma}_2) : \boldsymbol{\epsilon}_2 \, d\Omega \right\}.$
- Variational problem: find $(\mathbf{u}, \boldsymbol{\sigma}_1, \boldsymbol{\sigma}_2, \boldsymbol{\varepsilon}_1, \boldsymbol{\varepsilon}_2) \in V \times W_1 \times W_2 \times W_1 \times W_2$ such that

$$\int_{\Omega} \mathbf{DB} \mathbf{v} : \boldsymbol{\varepsilon}_{1} \, d\Omega + \int_{\Omega} \boldsymbol{\tau}_{1} : (-\boldsymbol{\varepsilon}_{1} + \boldsymbol{\varepsilon}_{2}) \, d\Omega + \int_{\Omega} \boldsymbol{\tau}_{2} : (\mathbf{D}^{-1} \boldsymbol{\sigma}_{2} - \boldsymbol{\varepsilon}_{2}) \, d\Omega = f(\mathbf{v}) ,$$

$$\mathbf{v} \in V , \quad \boldsymbol{\tau}_{1} \in W_{1}, \quad \boldsymbol{\tau}_{2} \in W_{2} ,$$

$$\int_{\Omega} (\mathbf{DB} \mathbf{u} - \boldsymbol{\sigma}_{1}) : \boldsymbol{\delta}_{1} \, d\Omega + \int_{\Omega} (\boldsymbol{\sigma}_{1} - \boldsymbol{\sigma}_{2}) : \boldsymbol{\delta}_{2} \, d\Omega = 0 , \quad \boldsymbol{\delta}_{1} \in W_{1}, \quad \boldsymbol{\delta}_{2} \in W_{2} .$$

- **Proposition 5.** The variational problem has a unique solution $(\mathbf{u}, \boldsymbol{\sigma}_1, \boldsymbol{\sigma}_2, \boldsymbol{\varepsilon}_1, \boldsymbol{\varepsilon}_2)$ $\in V \times W_1 \times W_2 \times W_1 \times W_2$.
- *Remark* 6. From Proposition 5, we observe that the Lagrange multipliers ε_1 and ε_2 in fact play a role of the strain field.

Variational formulation

• Galerkin approximation: find $(\overline{\mathbf{u}}_h, \mathbf{\sigma}_{1,h}, \mathbf{\sigma}_{2,h}, \mathbf{\varepsilon}_{1,h}, \mathbf{\varepsilon}_{2,h}) \in V_h \times W_{1,h} \times W_{2,h} \times W_{1,h} \times W_{2,h}$ such that

$$\int_{\Omega} \mathbf{DB} \mathbf{v} : \mathbf{\varepsilon}_{1,h} \, d\Omega + \int_{\Omega} \mathbf{\tau}_1 : (-\mathbf{\varepsilon}_{1,h} + \mathbf{\varepsilon}_{2,h}) \, d\Omega + \int_{\Omega} \mathbf{\tau}_2 : (\mathbf{D}^{-1} \mathbf{\sigma}_{2,h} - \mathbf{\varepsilon}_{2,h}) \, d\Omega = f(\mathbf{v}), \\ \mathbf{v} \in V_h, \quad \mathbf{\tau}_1 \in W_{1,h}, \quad \mathbf{\tau}_2 \in W_{2,h}, \\ \int_{\Omega} (\mathbf{DB} \overline{\mathbf{u}}_h - \mathbf{\sigma}_{1,h}) : \mathbf{\delta}_1 \, d\Omega + \int_{\Omega} (\mathbf{\sigma}_{1,h} - \mathbf{\sigma}_{2,h}) : \mathbf{\delta}_2 \, d\Omega = 0, \quad \mathbf{\delta}_1 \in W_{1,h}, \quad \mathbf{\delta}_2 \in W_{2,h}.$$

$$1) \quad \mathbf{v} = \mathbf{0} \quad \text{and} \quad \mathbf{\tau}_2 = \mathbf{0} \quad \rightarrow \quad \mathbf{\varepsilon}_{1,h} = P_{1,h} \mathbf{\varepsilon}_{2,h}.$$

- 2) $\mathbf{v} = \mathbf{0}$ and $\mathbf{\tau}_1 = \mathbf{0} \rightarrow \mathbf{\epsilon}_{2,h} = \mathbf{D}^{-1} \mathbf{\sigma}_{2,h}$.
- 3) $\boldsymbol{\tau}_1 = \boldsymbol{0} \text{ and } \boldsymbol{\tau}_2 = \boldsymbol{0} \rightarrow \int_{\Omega} \mathbf{D} P_{2,h} P_{1,h} \mathbf{B} \overline{\mathbf{u}}_h : P_{2,h} P_{1,h} \mathbf{B} \mathbf{v} \, d\Omega = f(\mathbf{v}), \ \mathbf{v} \in V_h.$

Therefore, the SSE method can be derived from the proposed variational principle.

A convergence theory for the SSE method will be studied based on the proposed variational formulation.

4. Conclusions & Future works

Conclusions

1. The SSE method has been developed for the linear 2D & 3D solid elements.

- The methods require no additional DOFs and no special smoothing domains.
- The elements provide more accurate solutions, especially more continuous strain/stress fields.

2. The SSE has been extended to 4-node 2D solid elements and 3-node shell elements.

- The piecewise linear shape functions are used for the extension to the 4-node elements.
- For the extension to the shell elements, the strain components are decomposed and transformed in a proper way, and then the SSE method is applied.
- 3. The strain-smoothed elements are still effective in geometric nonlinear analysis.
- 4. The elements are also effective in acoustic radiation analysis.
- 5. The variational formulation of the SSE method has been established.

- 1. Convergence analysis using the proposed variational principle.
- 2. Incompressible and nearly incompressible materials.
- 3. Material nonlinear analyses.
- 4. Acoustic radiation/scattering analyses.
- 5. Dynamic analysis.

감사합니다.