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Automotive EngineeringOffshore EngineeringAerospace Engineering

Biomedical EngineeringArchitectural Engineering

• https://altairhyperworks.com/industry/
• http://www.lminnomaritime.com/application-of-fem-on-ships-structural-design/

FEM in Engineering Fields
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 Commercial FEA software

 ABAQUS 

 ADINA 

 ANSYS

 NASTRAN

FEM in Engineering Fields
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Motivations

0201

Problems Needs

• 산학과제. 시뮬레이션 기반 고정도 선체 변형 및 정도
예측시스템개발. 한국과학기술원이필승외.

1. Accuracy and 
efficiency.

2. Instability.
3. New applications. 

1. Larger model size.
2. More complex 

analysis.
3. Higher accuracy 

and efficiency.
4. Real-time analysis.
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Motivations

0403

Solutions

1. Powerful computer 
components.

2. Parallelization, 
optimization, faster 
algorithms.

3. Development of 
finite element 
technologies.

Finite Elements

 Fundamentally 
affecting the 
accuracy and 
efficiency of FEA.

2D solid 
elements

3D solid 
elements

Shell & beam 
elements
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Motivations

Standard 3-node element Proposed 3-node element

2 10

mesh

Error: 96.6% Error: 6.1%

b
u
f

Example)

Relative errors (%) in vertical 
displacements at point A.

VS

 Finite element development ?

8/89



Finite Elements

 Various attempts for improving FE solutions

1. Reduced integrations & assumed strain methods

 URI (Uniform Reduced Integration) and SRI (Selective Reduced Integration).

 ANS (Assumed Natural Strain) and MITC (Mixed Integration of Tensorial Components).

2. Enrichment methods

 Enriched FEM, XFEM (eXtended FEM) and GFEM (Generalized FEM).

3. Strain smoothing methods

 Node, Edge, Face and Cell-based S-FEM (Smoothed FEM).

 Stiff behaviors of finite elements 

 Mesh refinement (h refinement, p refinement and r refinement) is tried first.

buf

buf
buf

buf
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2. Research background 
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Linear elasticity problem 

 Linear elastic boundary value problem
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Linear elasticity problem 

 Weak formulation

 Finite element formulation
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Strain smoothing

 Smoothing operation

( ) ( )

( )

1/ ,
( ) .

0,

k k

k k

A 
  



x
x

x

( )k : kth smoothing domain.

( )k x : smoothing function for domain

( )kA : area of the smoothing domain ( ) .k

( ) .k

 Smoothing function

ε
kε

: strain defined for                     
finite elements.

: smoothed strain defined   
for smoothing domain. ( )

( ) ( ) .
k k d


  ε x x

 Smoothing domain

 The area where strain smoothing is performed.

 This domain crosses the finite elements.

 valid for strains with 
constant values.
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Strain smoothing

 Smoothing domain (continued)

FEM domain

Node-based
smoothing domain

Edge-based
smoothing domain

(1) (1) (2) (2)

(1) (2)

1
( ).k c c

c c

A A
A A

 


ε ε ε

: smoothed strain defined 
for smoothing domain. 

14/89



History

 Liu et al. (2007)
- A cell-based S-FEM was proposed for 2D solid mechanics problems.
- An element is subdivided into finite number of smoothing cells (SCs).
- Depending on the number of SCs, it possesses spurious zero energy mode.

1. Development of smoothing methods for 2D & 3D linear solid elements.

 Chen et al. (2001)
- The strain smoothing method was first proposed for the Galerkin mesh-free method.

 Liu et al. (2009)
- A node-based S-FEM was proposed for 2D solid mechanics problems.
- It is effective for solving volumetric locking.
- It gives overly soft solutions.

 Liu et al. (2009)
- An edge-based S-FEM was proposed for 3-node triangular 2D solid element.
- It shows the best performance among the previous strain smoothing methods.

 Nguyen-Thoi et al. (2009)
- A face-based S-FEM was proposed for 4-node tetrahedral 3D solid element.
- The improvement of performance is not significant. 
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History

2007

2017

2. Extension to Polygonal & Polyhedral Solid Elements; Plate & Shell Elements

 Dai et al. (2007)
- An n-sided polygonal cell-based S-FEM was proposed for solid mechanics problems. 

 Nguyen-Thanh et al. (2008)
- A cell-based S-FEM for shell analysis was proposed.

 Cui et al. (2009)
- An edge-based S-FEM for shell analysis was proposed. 

 Nguyen-Thoi et al. (2011)
- An n-sided polygonal edge-based S-FEM was proposed for solid mechanics problems.

 Sohn and Im (2013)
- Variable-node plate and shell elements with smoothed integration was proposed.

 Shin and Lee (2015)
- A strain-smoothed 3-node triangular flat shell element with drilling DOFs was proposed.

 Nguyen-Hoang et al. (2016)
- A combined scheme of edge and node-based S-FEMs for shell analysis was proposed.

 Lee et al. (2017)
- An n-sided polyhedral edge/node-based S-FEMs was proposed for solid mechanics problems.
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History

2009

2019

3. Extension to Other Physics & Analysis

 He et al. (2009)
- An edge-based S-FEM was proposed for 3D acoustic problems.

 Bordas et al. (2010)
- Strain smoothing in XFEM was proposed.

 Sohn et al. (2013)
- A new carving technique combined with smoothed integration was proposed.

 Wang et al. (2015)
- A stable node-based smoothed finite element method for acoustic problems.

 Jin et al. (2016)
- Polyhedral type variable-node elements was proposed for 3D contact analysis.

 Eric et al. (2016)
- An S-FEM for analysis of multi-layered systems in biomaterials was proposed.

 Onishi et al. (2017)
- An F-bar aided edge-based S-FEM was proposed.

 Hamrani et al. (2017)
- A cell-based isogeometric analysis for 2D mechanics problems was proposed.

 He (2019)
- A CS-FEM for the numerical simulation of viscoelastic fluid flow was proposed.
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Research topics
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3. Research Topics
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Strain-smoothed linear 2D & 3D solid elements

Topic 1

3-node triangular 
2D solid element 

4-node tetrahedral 
3D solid element 
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 Shape functions:  

The 3-node triangular element

• Lee C, Lee PS. A new strain smoothing method for triangular and tetrahedral finite elements. Comput Methods Appl Mech
Eng 2018;341:939–955.

 Geometry and displacement interpolations

3

1

( , )i i

i

h r s


x x   .
T

i i ix yx

1 1 ,h r s   2 ,h r 3 .h s

3

1

( , )i i

i

h r s


u u   .
T

i i iu vu

( ) ( ) ( )e e eε B u

with

with





 ( )

1 2 3 .e B B B B

( )

1 2 3[ ] ,e Tu u u u with

 The 3-node triangular element has a constant 
strain field.

 Strain field

3-node triangular 
2D solid element 
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( ) ( ) ( ) ( ) ( )

( ) ( )

1
ˆ ( ).k e e k k

e k
A A

A A
 


ε ε ε

The 3-node element with the SSE method

 The strain-smoothed element (SSE) method for the 3-node element

( ) ( )ˆ .k eε ε

 If neighboring element exists through kth edge,

 If there is no neighboring element, 

( )e
ε

( )k
ε

: Strain of the target element.

: Strain of the kth neighboring element.

Step 1 of 2

(a) (b)

)(eε
)1(ε )2(ε

)3(ε
(1)ε̂

(2)ε̂ (3)ε̂

( ) ( ) ( ) ( ) ( )

( ) ( )

1
ˆ ( )k e e k k

e k
A A

A A
 


ε

c(p,q)

(1) (3)1
( )

2

a  ε

(1) (2)1
( )

2

b  ε

aε

(2) (3)1
( )

2

c  ε

cε

r

s

x

y

bε
a(p,p)

(c) (d)

b(q,p)

p=1/6

q=4/6

2

31

4 5

6

1
3

2

ε̂ε̂

ε̂ ε̂

ε̂ε̂

Strain smoothing between the target element and each neighboring element.

( )eA

( )kA

: Area of the target element.

: Area of the kth neighboring element.
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(1) (3)1
ˆ ˆ( ),

2

a  ε ε ε

(1) (2)1
ˆ ˆ( ),

2

b  ε ε ε

(2) (3)1
ˆ ˆ( ).

2

c  ε ε ε

The 3-node element with the SSE method

( ) 1
1 ( 2 ) .e a b cr p s p

r s p
q p q p q p

   
      

   
ε ε ε ε

 1st strain smoothing (in previous page)

 Smoothed strain field

Step 2 of 2 Construction of the smoothed strain field through Gauss points.

( ) ( ) ( ) ( ) ( )

( ) ( )

1
ˆ ( ).k e e k k

e k
A A

A A
 


ε ε ε

 2nd strain smoothing within elements

23/89



The Strain-Smoothed Element (SSE) Method

Previous strain 
smoothing methods

Strain-Smoothed 
Element (SSE) method

 Special smoothing domains.

 Constant strain fields.

 Some improvement in accuracy.

 Finite elements.

 (Bi-) linear strain fields.

 Very high accuracy.

FEM domain (w/ SSE method)Edge-based smoothing domain
24/89



4-node tetrahedral 
3D solid element 

 Shape functions: 

The 4-node tetrahedral element

 Geometry and displacement interpolations

4

1

( , , )i i

i

h r s t


x x

1 1 ,h r s t    2 ,h r 3 ,h s

4

1

( , , )i i

i

h r s t


u u

( ) ( ) ( )e e eε B u

with

with





 with

 The 4-node tetrahedral element has a constant strain field.

  .
T

i i i ix y zx

  .
T

i i i iu v wu

4 .h t

( )

1 2 3 4[ ] ,e Tu u u u u

 ( )

1 2 3 4 .e Β B B B B

 Strain field

• Lee C, Lee PS. A new strain smoothing method for triangular and tetrahedral finite elements. Comput Methods Appl Mech
Eng 2018;341:939–955. 25/89
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The 4-node element with the SSE method

 The strain-smoothed element (SSE) method for the 4-node element

( ) ( )ˆ .k eε ε

 If neighboring element exists through kth edge,

 If there is no neighboring element, 

( )e
ε

( )k

iε

: Strain of the target element.

: Strain of the ith element neighboring 

the kth edge of the target element.

Step 1 of 2 Strain smoothing between the target element and each neighboring element.
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ε
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ε

Target element

(a)

(5 3 5) / 20q  

(5 5) / 20p  

r

s

t

a(p,p,p)

b(q,p,p)

c(p,q,p)

d(p,p,q)

ε̂

with

ε̂ ε̂ε̂ ε̂

ε̂ ε̂ε̂ ε̂

ε̂ ε̂ε̂ ε̂(1)

(2)

(3)

(4)

(5)

(6)

edgethk
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The 4-node element with the SSE method

 Strain smoothing within elements

 Smoothed strain field

Step 2 of 2 Construction of the smoothed strain field through Gauss points.
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Basic numerical tests

 Patch tests

 The minimum number of DOFs is constrained to prevent rigid body motions.

 Proper loadings are applied to produce a constant stress field.

 To satisfy the patch tests, a constant stress value should be obtained at every point on elements.

 Isotropic element test

 The finite elements should give the same results regardless of the node numbering sequences used.

(a) (b)

 Zero energy mode test

 The number of zero eigenvalues of the stiffness matrix of unsupported elements is counted.

 The 2D and 3D solid elements should have three and six zero eigenvalues, respectively.

Membrane 
patch test I

Membrane 
patch test II

Bending 
patch test

Shearing 
patch test

Mesh for 
3D patch test
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 Standard FEM : 3-node triangular element

 ES-FEM : 3-node triangular element with the edge-based S-FEM

 SSE (proposed) : 3-node triangular element with the SSE method

 Reference solution

 Reference solutions are calculated using a 64×64 regular mesh of 9-node 2D solid elements.

 Evaluation method

 Convergence curves obtained using the energy norm                                        with   

 Displacements and stresses.

Numerical examples (2D)

 2 2

2

2

ref h ee

e

ref e

E



u u

u

2
.T

e Ω
dΩ u ε σ

 Finite elements considered

A mesh of 

N×N elements 

(N = 4)

N Test elements Reference

2 18 50 
4 50 162 
8 162 578 

16 578 2,178 
....

64 8,450 33,282 

Degrees of 

freedom 

(DOFs) per N
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Numerical examples (2D)

1) 2D block problem 

Regular 
mesh

Distorted
mesh

 Regular meshes ( elements)

2, 4, 8, 16.

 Distorted meshes ( elements)

6, 32, 128, 500.

 The distorted meshes are acquired through 

the commercial software ANSYS.

N N

N 

eN 

eN

 Force

Distributed compression force           . 

 Boundary condition

Bottom edge is clamped.

 Material property (plane stress condition)

73 10 ,E   0.3, 

1P 

71 10 .  
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1) 2D block problem

 Convergence curves.

More elements

h=1/N

More accurate

-1.2 -0.9 -0.6 -0.3

logh

-3.3

-3

-2.7

-2.4

-2.1

-1.8

-1.5

-1.2

-0.9

-0.6

-0.3

0

-1.2 -0.9 -0 .6 -0 .3

logh

-3.3

-3

-2.7

-2.4

-2.1

-1.8

-1.5

-1.2

-0.9

-0.6

-0.3

0

Standard FEM (linear)

ES-FEM

SSE (proposed)

Structured mesh Unstructured mesh
lo

g
 E

2 e

lo
g
 E

2 e

Numerical examples (2D)

Regular mesh Distorted mesh
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Numerical examples (2D)

2) Column under a compressive load problem

 Force

Compressive load 

 Boundary condition

Bottom edge is clamped.

 Material property (plane stress condition)

 Regular meshes ( elements)

8, 16.

3

max 5 10 .P  

610 ,E  0. 

5N N

N 
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Numerical examples (2D)

2) Column under a compressive load problem

 von Mises stress distributions for the regular mesh (N = 8).

Standard FEM SSE (proposed)

Reference

buf
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Numerical examples (3D)

 Standard FEM : 4-node tetrahedral element

 FS-FEM : 4-node tetrahedral element with the face-based S-FEM

 ES-FEM : 4-node tetrahedral element with the edge-based S-FEM

 SSE (proposed) : 4-node tetrahedral element with the SSE method

 Finite elements considered

 Reference solution

 Reference solutions are calculated using a 16×16×16 regular mesh of 27-node 3D solid elements.

A mesh of 

N×N×N elements 

(N = 4)

N Test elements Reference

2 81 375 
4 375 2,187 
8 2,187 14,739 

16 14,739 107,811 

Degrees of 

freedom 

(DOFs) per N

 Evaluation method

 Convergence curves obtained using the energy norm                                        with   

 Displacements and stresses.

 2 2

2

2

ref h ee

e

ref e

E



u u

u

2
.T

e Ω
dΩ u ε σ
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Numerical examples (3D)

1) Lame problem

 Force

Internal pressure           . 

 Boundary condition

Symmetric boundary conditions are imposed.

 Material property

 Regular meshes ( elements)

2, 4, 8.

31 10 ,E   0.3. 

1p 

N 

N N N 

35/89



2) Cook’s skew beam problem 

 von Mises stress at point G.

1) Lame problem

 Convergence curves. 

Numerical examples (3D)

N
Standard 

FEM
FS-FEM ES-FEM

SSE 
(proposed)

2
106.2858 

(38.00)
125.3865 

(26.86)
150.2877 

(12.33)
166.7563 

(2.73)

4
132.7286 

(22.58)
143.6493 

(16.20)
157.3288 

(8.22)
166.3370 

(2.97)

8
149.4181 

(12.84)
155.2355 

(9.45)
162.2212 

(5.37)
166.6823 

(2.77)

16
159.4205 

(7.00)
162.5707 

(5.17)
167.5228 

(2.28)
169.5621 

(1.09)

• Reference solution: 171.4286
• The values in () indicate relative errors (%).

x

z

y

(b)(a)

2

1

C A

D

B

F

p=100

E

x
y

z

G
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Strain-smoothed 4-node quadrilateral 2D solid element 

Topic 2

4-node quadrilateral
2D solid element 
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 Standard bilinear shape functions: 

The 4-node quadrilateral element

 Standard 4-node quadrilateral element

4

1

ˆ ( , )i i

i

h r s


x x   .
T

i i ix yx 1
ˆ (1 )(1 ) / 4,h r s   2

ˆ (1 )(1 ) / 4,h r s  

4

1

ˆ ( , )i i

i

h r s


u u   .
T

i i iu vu

with

with





4
ˆ (1 )(1 ) / 4.h r s  3

ˆ (1 )(1 ) / 4,h r s  

 Geometry and displacement interpolations

 ( )

1 2 3 4 .m B B B B B

( )

1 2 3 4[ ] .m Tu u u u u

( ) ( ) ( )m m mε B u

( ) ( )m m ε u

 Strain field





with

with

 The 4-node 2D element has a non-constant 
strain field due to rs term in shape functions .

The strain smoothing method cannot be applied to standard 4-node element.

 Smoothing operation

( )
( ) ( ) .

kk k d


  ε ε x x

 valid for strains with constant values.
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 The two shape functions corresponding to node 3 along element edges and a diagonal r=s are depicted.

 The two shape functions show different variations along the diagonal.

The 4-node element

 Comparison of the piecewise linear & standard bilinear shape functions

r s
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

1 (1 2 ) / 4,h r s   2 (1 2 ) / 4,h r s  

3 (1 ) / 4,h s  4 (1 ) / 4.h s 

 Piecewise linear shape functions (on T1): 

The 4-node element

 Modified 4-node quadrilateral element

 The element domain is subdivide into four non-overlapping triangular domains (from T1 to T4).

4

1

( , )i i

i

h r s


x x   .
T

i i ix yx

4

1

( , )i i

i

h r s


u u   .
T

i i iu vu

with

with



 Geometry and displacement interpolations

( )

1 2 3 4 ,k m k k k k   B B B B B

( )

1 2 3 4[ ] .m Tu u u u u

( ) ( ) ( )k m m mε B u

 Strain field

 with k =1, 2, 3, 4,

 The 4-node 2D element has piecewise 
constant strain fields defined for sub-triangles.



 Smoothing operation

( )
( ) ( ) .

kk k d


  ε ε x x

 valid for strains with constant values.
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( ) ( )ˆ .k k mε ε

The 4-node element with the SSE method

 The SSE method for the 4-node element

 If neighboring element exists through kth edge,

 If there is no neighboring element, 

( )k m
ε

( )k
ε

: Strain of the kth sub-triangle of the  

the target element.

: Strain of the sub-triangle (belonging to 

neighboring element) through the  kth edge 

of the target element.

Step 1 of 2 Strain smoothing between the target element and each neighboring element.

( ) ( ) ( ) ( ) ( )

( ) ( )

1
ˆ ( ).k m k m k k

km k

k

A A
A A

 


ε ε ε
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The 4-node element with the SSE method

 Strain smoothing within elements

 Smoothed strain field

Step 2 of 2 Construction of the smoothed strain field through Gauss points.

 block

 4
( )

1

( , )m

i i

i

h r s


ε ε
3 1 1

( , ) ,
4 3 3

i i ih r s r r 
  

    
  

   1 2 3 4 1 1 1 1 ,          1 2 3 4 1 1 1 1 .      

with

,

,

,

.
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 Evaluation method

 Convergence curves obtained using the energy norm                                         with   

 Displacements and stresses.

Numerical examples (2D)

 2 2

2

2

ref h ee

e

ref e

E



u u

u

2
.T

e Ω
dΩ u ε σ

 Q4 : 4-node quadrilateral element

 ES-Q4 : 4-node quadrilateral element with the edge-based S-FEM

 ICM-Q4 : incompatible modes 4-node quadrilateral element

 SSE-Q4 (proposed) : strain-smoothed 4-node quadrilateral element (SSE method)

 Finite elements considered

 Reference solution

 Reference solutions are calculated using a 64×64 regular mesh of 9-node 2D solid elements.

A mesh of 

N×N elements 

(N = 4)

N Test elements Reference

2 18 50 
4 50 162 
8 162 578 

16 578 2,178 
64 8,450 33,282 

Degrees of 

freedom 

(DOFs) per N
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Numerical examples (2D)

1) Cook’s skew beam problem 

 Force

Distributed shearing force                   . 

 Boundary condition

Left edge is clamped.

 Material property (plane stress condition)

 Regular and distorted meshes ( elements)

2, 4, 8, 16.

73 10 ,E   0.3. 

1/16sf 

N N

N 

buf buf

buf buf
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1) Cook’s skew beam problem 

 Normalized horizontal displacements (               )  at point A.

Numerical examples (2D)

/h refu u

More elements

More 
accurate
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1) Cook’s skew beam problem 

 Computational efficiency curves. 

Numerical examples (2D)

• Computation times taken from obtaining stiffness matrices to solving linear equations are measured. 

• Computations are performed in a PC with Intel Core i7-6700, 3.40GHz CPU and 64GB RAM.

• The CSR format is used for storing matrices and Intel MKL PARDISO is used for solving linear equations.

More accurate

More computation time
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Numerical examples (2D)

2) Block under complex forces problem 

 Force

Compressive body force                         and 

eccentric tensile traction

 Boundary condition

The block is supported along its bottom.

 Material property (plane stress condition)

 Regular and distorted meshes ( elements)

2, 4, 8, 16.

73 10 ,E   0.25. 

N N

N 

 2( 1)Bf y 

3.2.sf 
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2) Block under complex forces problem 

 von Mises stress distributions for the regular mesh (N = 16).

Numerical examples (2D)

Q4 ES-Q4

SSE-Q4 (proposed) Reference

buf
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Topic 3

Strain-smoothed MITC3+ shell element for geometric 
nonlinear analysis

3-node triangular 
shell element 
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 Shell behaviors

Shell elements

 Asymptotic behaviors

 The behaviors of shell converges to a specific limit state as the thickness becomes small.

 Three different asymptotic categories:

 Bending-dominated, membrane-dominated, mixed behaviors.

Bending Membrane Transverse shear

 Locking 

 The accuracy of the solution deteriorates rapidly as the thickness becomes small.

 It happens when the finite elements discretization cannot accurately represent pure bending 

displacement fields.

 Membrane locking, shear locking.
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 The MITC3+ shell finite element.

 The shell element has an internal bubble node at element center.

 The bubble node only has two rotational DOFs with a cubic bubble function.

 Assumed covariant transverse shear strain fields are employed to alleviate shear locking.

 Its excellent bending behavior is demonstrated through various linear and nonlinear analyses.

• Lee Y, Lee PS, Bathe KJ. The MITC3+ shell element and its performance. Comput Struct 2014;138:12–23.

The MITC3+ shell element

Geometry Tying points for the assumed shear strain fields

bu
f
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 In membrane problem

 DISP3 = MITC3+

The MITC3+ shell element

Reference

DISP3 MITC3+

DISP3:
displacement-based 3-node shell element 
(no treatment for alleviating shear locking).

MITC3+:
3-node shell element with the MITC method.

Reference is obtained using the MITC9 shell 
elements.

52/89



 S

The MITC3+ shell element

 Geometry & displacement interpolations

with  ( , , )t t t

m br s   x x x
3

1

( , ) ,t t

m i i

i

h r s


x x
4

1

1
( , ) .

2

t t i

b i i n

i

a f r s


 x V

 S

 
1 2( , , ) ( )m b br s    u u u u

with

 
4

1 2 1

1

1
( , ) ,

2

t i t i

b i i i i

i

a f r s  


  u V V

 
4

2 2

2

1

1
( , ) .

4

t i

b i i i i n

i

a f r s  


   
 u V

1,l m b u u u 2.q bu u

 Shape functions:
1 1 ,h r s   2 ,h r 3 ,h s

1 1 4

1
,

3
f h f  2 2 4

1
,

3
f h f  3 3 4

1
,

3
f h f  4 27 (1 ).f rs r s  

3

1

( , ) ,m i i

i

h r s


u u

b
uf

Geometry of the MITC3+ shell element

u : incremental displacement vector from the configuration
at time to that at time

t
x : position vector in the configuration at time .t

.t tt
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The MITC3+ shell element

 Green-Lagrange strain components

 
 0 0

0

1

2

t t t

ij i j i j    g g g g

 1 2 2

0 0 0 0

t t m t b t b

ij ij ij ij       

 0 0

0 , , , ,

1
,

2

t m t t

ij m i m j m i m j    x x x x

   1 0 0 0 0

0 , , , , , , , ,

1
,

2

t b t t t t

ij m i b j m j b i m i b j m j b i         
 

x x x x x x x x

 2 0 0

0 , , , ,

1
,

2

t b t t

ij b i b j b i b j    x x x x
,

, ,
t

t m
m i

ir






x
x

, .
t

t b
b i

ir






x
x

with i, j =1, 2, 3. 

and



 In-plane strain components (i, j =1, 2 ):

where

 Incremental strain components

with

 0 0 0 , , , ,

1
( )

2

t t t t t

ij ij ij i j i j i j         u g g u u u

0

1
( ),

2

t tl l
ij j i

i j

e
r r

 
 

 

u u
g g

0

1 1
.

2 2

q qt tl l
ij j i

i j i jr r r r


     
               

u uu u
g g 

0 0 0ij ij ije   S

with i, j =1, 2, 3.  

t
t

i

ir





x
g : covariant base vectors at time .t

,i

ir





u
u : derivatives of incremental displacement vector.
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 1 2 2

0 0 0 0

m b b

ij ij ij ij       

• S

The MITC3+ shell element

 Incremental strain components (continued)

•

 1 2 2

0 0 0 0

m b b

ij ij ij ije e e e     0 , , , ,

1
,

2

m t t

ij m i m j m j m ie    x u x u

 1

0 , 1, , 1, , , , ,

1
,

2

b t t t t

ij m i b j m j b i b i m j b j m ie        x u x u x u x u

 2

0 , 1, , 1,

1
.

2

b t t

ij b i b j b j b ie    x u x u

with

with
0 , ,

1
,

2

m

ij m i m j  u u

 1

0 , 1, , 1, , 2, , 2,

1
,

2

b t t

ij m i b j m j b i m i b j m j b i        u u u u x u x u

 2

0 1, 1, , 2, , 2,

1
.

2

b t t

ij b i b j b i b j b j b i      u u x u x u

• S

1 2 2

0 0 0 0 .m b b

ij ij ij ij       

0 0 0 ,m m m

ij ij ije  
1 1 1

0 0 0 ,b b b

ij ij ije  
2 2 2

0 0 0 .b b b

ij ij ije  

 In-plane strain components (i, j =1, 2):
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The MITC3+ shell element

 Assumed transverse shear strain fields

3 3 3

0 3 0 3 0 3

MITC MITC MITC

i i ie    

 3

0 13 0 13 0 23 0 13 0 23 0

2 1 1 1
ˆ(3 1),

3 2 3 3

MITC B B A A c s      
      

 

 3

0 23 0 23 0 13 0 13 0 23 0

2 1 1 1
ˆ(1 3 ),

3 2 3 3

MITC C C A A c r      
      

 

0 0 13 0 13 0 23 0 23
ˆ .F D F Ec       

Tying points for the assumed 
shear strain fields

with i, j =1, 2, 3. 

where

and
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 ,( ) ,( ) ( ) ( ) ( ) ( )

0 0 ( )( )m k m k e k l e k n

ij ln i j   g g g g

where

1 2 2

0 0 0 0

m b b

ij ij ij ij       

The MITC3+ shell element with the SSE method

 The covariant in-plane strain components (i, j =1, 2) can be decomposed as follows

Step 1 of 4 Decomposition of strain components.

with    

 0 , , , ,

1
,

2

m t t

ij m i m j m j m ie    x u x u

 
0 0 0

m m m

ij ij ije  

0 , ,

1
.

2

m

ij m i m j  u u

 Element centers (                      and           ) are the 
reference points of the coordinate transformation.

 Strain transformation

Step 2 of 4 Matching the coordinate systems of strains of the target and neighboring elements.

 1/ 3r s  0 

with                   1, 2. , , ,i j l n 

 Effect of out-of-plane strains is neglected.

• Lee C, Lee PS. The strain-smoothed MITC3+ shell finite element. Comput Struct 2019;223. 57/89



,( ) ,( )

0 0
ˆ .m k m e

ij ij 

 ,( ) ,( ) ( ) ,( ) ( )

0 0 0( ) ( )

1
ˆ ( )m k m e e m k k

ij ij ije k
A A

A A
   



with

The MITC3+ shell element with the SSE method

Strain smoothing between the target element and each neighboring element.

 Smoothed strain

 If there is no neighboring element, 

 Projected area 

 ( ) ( ) ( ) ( )( )k e k kA A n n ( ) ( ) ( )

3 3/ ,e e en g g
( ) ( ) ( )

3 3/ .k k kn g g

with    i, j =1, 2.

Step 3 of 4
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, ,( ) ,( ) ,( )

0 0 0 0

1
1 ( 2 )m SSE m A m B m C

ij ij ij ij

r p s p
r s p

q p q p q p
   

   
      

   

,( ) ,(3) ,(1)

0 0 0

1
ˆ ˆ( ),

2

m A m m

ij ij ij    ,( ) ,(1) ,(2)

0 0 0

1
ˆ ˆ( ),

2

m B m m

ij ij ij   

 ,( ) ,(2) ,(3)

0 0 0

1
ˆ ˆ( )

2

m C m m

ij ij ij   

The MITC3+ shell element with the SSE method

 Strain smoothing within elements

 Smoothed covariant membrane strain field

Construction of the smoothed strain field through Gauss points.

, 1,2.i j 

with , 1,2.i j 

(a) (b)

)(eε
)1(ε )2(ε

)3(
ε

(1)ε̂
(2)ε̂ (3)ε̂

( ) ( ) ( ) ( ) ( )

( ) ( )

1
ˆ ( )k e e k k

e k
A A

A A
 


ε

c(p,q)

(1) (3)1
( )

2

a  ε

(1) (2)1
( )

2

b  ε

aε

(2) (3)1
( )

2

c  ε

cε

r

s

x

y

bε
a(p,p)

(c) (d)

b(q,p)

p=1/6

q=4/6

2

31

4 5

6

1
3

2

ε̂ε̂

ε̂ ε̂

ε̂ε̂

 The smoothed covariant membrane strain replaces the original 

covariant membrane strain.

 For the covariant transverse shear strains, we adopt the assumed strains 

of the MITC3+ shell element.

with

Step 4 of 4
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Element Description

Allman
 A flat shell element that combines a triangular membrane element with Allman’s drilling

DOFs and the discrete Kirchhoff-Mindlin triangular (DKMT) plate element are combined.
 It requires 18 DOFs for an element.

ANDES 
(OPT)

 A flat shell element that combines the assumed natural deviatoric strain (ANDES)
triangular membrane element with 3 drilling DOFs and optimal parameters and the DKMT
plate element.

 It has 18 DOFs for an element.

Shin and
Lee

 As a flat shell element, the edge-based strain smoothing method is applied to the ANDES
formulation-based membrane element with 3 drilling DOFs, and the DKMT plate element
is combined.

 New values of the free parameters in the ANDES formulation are introduced.
 It requires 18 DOFs for an element.

Numerical examples (Shell / Linear analysis)

 Finite elements considered (flat shell elements)
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Element Description

MITC3+
 A continuum mechanics based 3-node shell element with a bubble node.
 The bubble node has 2 rotational DOFs which can be condensed out on the element level.
 It has 15 DOFs for an element.

Enriched 
MITC3+

 The MITC3+ shell element enriched in membrane displacements by interpolation covers.
 4 DOFs per node are added and thus the element has 27 DOFs for an element in total.

Numerical examples (Shell / Linear analysis)

 Finite elements considered (curved shell elements)

 Evaluation method

 Convergence curves obtained using the s-norm                                   with   

 Displacements and stresses.

2

2

ref h s
h

ref s

E



u u

u

2

.T

ref h s
d


    u u ε τ

 Reference solution

 Reference solutions are calculated using a 64×64 regular mesh of the MITC9 shell elements.
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Numerical examples (Shell / Linear analysis)

1) Cook’s skew beam problem 

 Force

Distributed shearing force                  . 

 Boundary condition

Left edge is clamped.

 Material property

 Two patterns of meshes ( elements)

2, 4, 8, 16, 32.

1,E  1/ 3. 

1/16p 

N N

N 
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Numerical examples (Shell / Linear analysis)

1) Cook’s skew beam problem 

 Normalized vertical displacements ( ) 

at point A for Mesh I.

/h refv v

 The total number of DOFs when 

increasing the N.
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 Material property & Thickness

 Regular meshes ( elements)

2, 4, 8, 16, 24.

Numerical examples (Shell / Linear analysis)

2) Hyperbolic paraboloid shell problem

 Problem description

 Force

Self-weight loading 

 Boundary condition

One end is clamped. 

112 10 ,E   0.3, 8.zf 

2N N

N 

0.001.t 

 Normalized vertical displacements 
(   ) at point D./h refw w
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Numerical examples (Shell / Linear analysis)

3) Scordelis-Lo roof shell problem 

 Force

Self-weight loading

 Boundary condition

The shell is supported by rigid diaphragms.

 Material property & Thickness

 Two patterns of meshes ( elements)

4, 8, 16, 32.

84.32 10 ,E   0, 

90.zf 

N N

N 

0.25,  0.025,  0.0025.t 
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Numerical examples (Shell / Linear analysis)

3) Scordelis-Lo roof shell problem 

 von Mises stress distributions for Mesh I when t = 0.25.
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3) Scordelis-Lo roof shell problem 

 Computational efficiency curves for Mesh II when t = 0.025. 

Numerical examples (Shell / Linear analysis)

• Computation times taken from obtaining stiffness matrices to solving linear equations are measured. 

• Computations are performed in a PC with Intel Core i7-6700, 3.40GHz CPU and 64GB RAM.

• A symmetric skyline solver is used for solving linear equations.
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Numerical examples (Shell / Nonlinear analysis)

1) Cantilever beam subjected to a tip moment problem

 Force

Tip moment 

 Boundary condition

Left edge is clamped.

 Material property & Thickness

 20 load steps

31.2 10 ,E   0.2, 

max 10 .M 

 Regular and distorted              meshes of 

triangular elements.

 Regular              meshes of MITC9 elements 

for reference.

20 2

40 4

1.t 
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1) Cantilever beam subjected to a tip moment problem

 Deformed configurations at the load levels                       0.25, 0.5, 0.75, 1.0  for regular mesh.

Numerical examples (Shell / Nonlinear analysis)

Reference

MITC3+ 

max/M M 

Smoothed MITC3+ (proposed)
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Numerical examples (Shell / Nonlinear analysis)

2) Slit annular plate subjected to a lifting line force problem

 Force

Shearing force   

 Boundary condition

One end is clamped.

 Material property & Thickness

 10 load steps

max 0.8.p 

72.1 10 ,E   0,  0.03.t 

 mesh of triangular elements.

 mesh of MITC9 elements for reference.

6 30

12 60
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Numerical examples (Shell / Nonlinear analysis)

2) Slit annular plate subjected to a lifting 

line force problem

 Load-displacement curves

(        and        ).

buf

Bw Cw
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3-node triangular 
2D solid element 

Topic 4

Acoustic radiation analysis using the strain-smoothed 
triangular element
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 d

 d

 d

 d

Acoustic radiation problem 

 Formulation
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Numerical examples (Acoustic radiation analysis)

1) Circumferentially harmonic radiation from a cylinder

 Force

Pressure                              at             . 

 Boundary condition

Dirichlet to Neumann (DtN) condition along       .  

 Material property

Density:                      

Wave speed: 

Wave numbers: 

 Regular meshes ( elements)

2, 3, 4, 10.

31.225 kg/m , 

340 m/s.c 

12N N

N 

( ) cos(4 )p   1r r

10, 16, 22.q 

a

12N N

( 3)N 
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Numerical examples (Acoustic radiation analysis)

1) Circumferentially harmonic radiation from a cylinder 

 Pressure distributions for the mesh (N = 3).

12N N

q (wave number) = 10, 16, 22 (1)

4

(1)

4 1

( )
( , ) cos(4 ).

( )

H kr
p r

H kr
 

 Analytical solution:
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Numerical examples (Acoustic radiation analysis)

1) Circumferentially harmonic radiation from a cylinder 

 Pressure distributions for the mesh (N = 2, 3).

12N N

q (wave number) = 10, 16, 22 

N = 2 N = 3

(1)

4

(1)

4 1

( )
( , ) cos(4 ).

( )

H kr
p r

H kr
 

 Analytical solution:
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Numerical examples (Acoustic radiation analysis)

1) Circumferentially harmonic radiation from a cylinder 

 Pressure distributions for the mesh (N = 3, 4).

12N N

q (wave number) = 10, 16, 22 

N = 3 N = 4

(1)

4

(1)

4 1

( )
( , ) cos(4 ).

( )

H kr
p r

H kr
 

 Analytical solution:
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Numerical examples (Acoustic radiation analysis)

1) Circumferentially harmonic radiation from a cylinder 

 Pressure distributions for the mesh (N = 4, 10).

12N N

q (wave number) = 10, 16, 22

N = 4 N = 10

(1)

4

(1)

4 1

( )
( , ) cos(4 ).

( )

H kr
p r

H kr
 

 Analytical solution:
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Topic 5

Variational formulation for the strain-smoothed element 
method

In collaboration with

Ph.D. Jongho Park,

Department of Mathematical Sciences, KAIST.
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 d

 d

 d

 d

Variational formulation 

 Abstract form

 Setting (mesh, functional space)

 d  d
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 d

 d

 d

 d

 d

 d

Variational formulation 

 Original approach of the SSE method
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 d

Variational formulation 

 Original approach

 d

( 2)Gε

( 1)Gε

( 3)Gε

( ) 1
1 ( 2 ) ( 1) ( 2) ( 3).e r p s p

r s p G G G
q p q p q p

   
      

   
ε ε ε ε

( 2)Gε

( 1)Gε

( 3)Gε

 Alternative view: twice-projected strain

 It does not imply modification of the method.

 The alternative view is used only in the process of establishing

variational formulation and convergence theory.
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 d

 d

 d

 d

 d

 d

 d

 d

Variational formulation 

 Alternative view: twice-projected strain

h 1,h 2,h
(a) (b) (c)

83/89



 d

 d

 d

 d

 d

Variational formulation 

 Variational formulation
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 d

Variational formulation 

 Variational formulation

A convergence theory for the SSE method will be studied 

based on the proposed variational formulation. 
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4. Conclusions & Future works

86/89



Conclusions

1. The SSE method has been developed for the linear 2D & 3D solid elements.
 The methods require no additional DOFs and no special smoothing domains.
 The elements provide more accurate solutions, especially more continuous strain/stress fields.

2. The SSE has been extended to 4-node 2D solid elements and 3-node shell elements.
 The piecewise linear shape functions are used for the extension to the 4-node elements.
 For the extension to the shell elements, the strain components are decomposed and transformed 

in a proper way, and then the SSE method is applied. 

3. The strain-smoothed elements are still effective in geometric nonlinear analysis. 

4. The elements are also effective in acoustic radiation analysis.

5. The variational formulation of the SSE method has been established. 
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Future works

1. Convergence analysis using the proposed variational principle.

2. Incompressible and nearly incompressible materials.

3. Material nonlinear analyses.

4. Acoustic radiation/scattering analyses.

5. Dynamic analysis.

88/89



감사합니다.

89/89


