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1. Introduction
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FEM in Engineering Fields

Aerospace Engineering

Architectural Engineering Biomedical Engineering

*  https://altairhyperworks.com/industry/
. http://www.Iminnomaritime.com/application-of-fem-on-ships-structural-design/ 4/89



https://altairhyperworks.com/industry/
http://www.lminnomaritime.com/application-of-fem-on-ships-structural-design/

FEM in Engineering Fields

«* Commercial FEA software

2
2S simmuLIA = ABAQUS

HBHQUS = ADINA

=  ANSYS
= NASTRAN

ADINA,

. | MSC Nastran

MSC A Software’

‘Strmriating Saalty, Dut P ‘

5/89



Motivations

Problems Needs
1. Accuracy and 1. Larger model size.
efficiency. 2. More complex
2. Instability. analysis.
3. New applications. 3. Higher accuracy

and efficiency.
4. Real-time analysis.
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1.

2.

Powerful computer
components.
Parallelization,
optimization, faster
algorithms.
Development of
finite element
technologies.
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Finite Elements

= Fundamentally
affecting the
accuracy and

efficiency of FEA.
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} 2D solid
elements

3D solid
elements

Shell & beam
elements
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Motivations

+¢ Finite element development ?

10
8
6
Error: 96.6%
= 4
0
20 2 -;- 6 8

Standard 3-node element

VS

Example)

Relative errors (%) in vertical
displacements at point A.

2x10
mesh
10
8
6
Error: 6.1%
= 4
0
2 L
0 2 4 6 8

Proposed 3-node element

10
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Finite Elements

+» Stiff behaviors of finite elements

= Mesh refinement (h refinement, p refinement and r refinement) is tried first.

i
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+* Various attempts for improving FE solutions
1. Reduced integrations & assumed strain methods
v"URI (Uniform Reduced Integration) and SRI (Selective Reduced Integration).
v" ANS (Assumed Natural Strain) and MITC (Mixed Integration of Tensorial Components).
2. Enrichment methods
v Enriched FEM, XFEM (eXtended FEM) and GFEM (Generalized FEM).
3. Strain smoothing methods
v" Node, Edge, Face and Cell-based S-FEM (Smoothed FEM).
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2. Research background
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Linear elasticity problem

+¢ Linear elastic boundary value problem

Let QcR* be abounded and polygonal domain. The boundary 8Q of Q consists of two
parts [, =< and I',, =0Q\ T7,.

dive +b=0 in Q, (equilibrium equations)
¢'n=t on I',, u=0 on I, (boundary conditions)

¢6=De In O, (constitutive equations)

= %(‘Fu +Vu') in Q, (strain-displacement equations)

where D isa 3x3 matrix of material constants that is symmetric and positive definite.
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Linear elasticity problem

** Weak formulation

Find weV such that space of displacement fields:
am,v)=f(v), ¥Yvel, V :{u e(H'(Q)*:u=0on I‘D}.
where

a(u,v) = LDE[U] e[v]dQ, space of strain and stress fields:
f(v):jﬂb-vdﬂ+jr_t-vdr. W =(F(Q).

** Finite element formulation

KU=F=F, +F,,

where
— g (s I (1) . £ (m)T 3 e T
K _;jﬁ B"”"DB" dQ, F, —; [, H"bdQ, F, = Z=1 [ H""tdr.
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Strain smoothing

+* Smoothing operation

3 > &
:'st'rain defined for J' k S(X)CDk (X)dQ. : smoothed' strain defined
finite elements. Q) for smoothing domain.

v" valid for strains with
constant values.

** Smoothing domain
= The area where strain smoothing is performed.

Q" . kth smoothing domain.
=  This domain crosses the finite elements.

¢ Smoothing function

1/ AR x e Q™ A™ . area of the smoothing domain Q®,
0, X ¢ QW @, (X) : smoothing function for domain Q.

(Dk(x) :{
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Strain smoothing

** Smoothing domain (continued) Nod
® odaces

A Mid-edge points
x Center points

~ 1
g = —Aél) AT

: smoothed strain defined
for smoothing domain. FEM domain

(Afl)a(l) + A:(Z)E(Z)).

Edge-based Node-based
smoothing domain smoothing domain
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1. Development of smoothing methods for 2D & 3D linear solid elements.

>

Chen et al. (2001)
- The strain smoothing method was first proposed for the Galerkin mesh-free method.

Liu et al. (2007)

- A cell-based S-FEM was proposed for 2D solid mechanics problems.

- An element is subdivided into finite number of smoothing cells (SCs).

- Depending on the number of SCs, it possesses spurious zero energy mode.

Liu et al. (2009)

- A node-based S-FEM was proposed for 2D solid mechanics problems.
- It is effective for solving volumetric locking.

- It gives overly soft solutions.

Liu et al. (2009)
- An edge-based S-FEM was proposed for 3-node triangular 2D solid element.
- It shows the best performance among the previous strain smoothing methods.

Nguyen-Thoi et al. (2009)
- A face-based S-FEM was proposed for 4-node tetrahedral 3D solid element.
- The improvement of performance is not significant.

15/89



2. Extension to Polygonal & Polyhedral Solid Elements; Plate & Shell Elements

>

>

Dai et al. (2007) 2007

- An n-sided polygonal cell-based S-FEM was proposed for solid mechanics problems.

Nguyen-Thanh et al. (2008)
- A cell-based S-FEM for shell analysis was proposed.

Cui et al. (2009)
- An edge-based S-FEM for shell analysis was proposed.

Nguyen-Thoi et al. (2011)
- An n-sided polygonal edge-based S-FEM was proposed for solid mechanics problems.

Sohn and Im (2013)
- Variable-node plate and shell elements with smoothed integration was proposed.

Shin and Lee (2015)
- A strain-smoothed 3-node triangular flat shell element with drilling DOFs was proposed.

Nguyen-Hoang et al. (2016)
- A combined scheme of edge and node-based S-FEMs for shell analysis was proposed.

Lee et al. (2017)
- An n-sided polyhedral edge/node-based S-FEMs was proposed for solid mechanics problems.
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3. Extension to Other Physics & Analysis

> He et al. (2009) 2009

- An edge-based S-FEM was proposed for 3D acoustic problems.

> Bordas et al. (2010)
- Strain smoothing in XFEM was proposed.

> Sohn et al. (2013)
- A new carving technique combined with smoothed integration was proposed.

» Wang et al. (2015)
- A stable node-based smoothed finite element method for acoustic problems.

» lJinetal. (2016)
- Polyhedral type variable-node elements was proposed for 3D contact analysis.

> Eric et al. (2016)
- An S-FEM for analysis of multi-layered systems in biomaterials was proposed.

» Onishi et al. (2017)
- An F-bar aided edge-based S-FEM was proposed.

» Hamrani et al. (2017)
- A cell-based isogeometric analysis for 2D mechanics problems was proposed.

> He (2019)
- A CS-FEM for the numerical simulation of viscoelastic fluid flow was proposed.
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Research topics

3. Research topics

v

AN N

Topic 1: Strain-smoothed linear 2D & 3D solid elements

Topic 2: Strain-smoothed 4-node quadrilateral 2D solid element

Topic 3: Improving the membrane behavior of the MITC3+ shell element

Topic 4: Acoustic radiation analysis using the strain-smoothed triangular element.

Topic 5: Variational formulation for the strain-smoothed element (SSE) method.
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3. Research Topics
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Topic 1

Strain-smoothed linear 2D & 3D solid elements

o

3-node triangular 4-node tetrahedral
2D solid element 3D solid element
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The 3-node triangular element

+* Geometry and displacement interpolations

. x=_23:hi(r,s)xi with x =[x v].

3
« u=>h(rsu with u=[u v]. s
i=1

3-node triangular

= Shape functions: =1-r-s, h=r, h =s
n 2 3 2D solid element
+¢ Strain field K al 2 Y
!/“ ."‘I "\\ f/’ \\\ //' \\ B X
. 8(e) — B(e)u(e) with u(e) — [u1 U2 U3]T, T / ~.\ /. \ / \\ \T
\.-\_\.» / \ \ ‘ /// 4
B9 =[B, B, B,] AN \# / -
/‘ \\ / ‘\\
« ﬂ A /J‘
* The 3-node triangular element has a constant ’/‘ \ « | % “
strain field. e ’,‘ /,ZL»/
~— ‘\\& ‘ Sl csed

* Lee C, Lee PS. A new strain smoothing method for triangular and tetrahedral finite elements. Comput Methods Appl Mech
Eng 2018;341:939-955. 21/89



The 3-node element with the SSE method

¢ The strain-smoothed element (SSE) method for the 3-node element

£® : Strain of the target element.

¢® : Strain of the k*" neighboring element.

A® : Area of the target element.

A® : Area of the kth neighboring element.

Step 1 of 2 Strain smoothing between the target element and each neighboring element.

> If neighboring element exists through k" edge,

1
a(k) _ (e) n(e) (k) o (k)
g = 2D L AW (A™e™ + A™g™).

» If there is no neighboring element,

200 _ (@
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The 3-node element with the SSE method

m Construction of the smoothed strain field through Gauss points.

» 1%t strain smoothing (in previous page)

1
ak) _ (&) () (k) o (k)
€ IS (A™e™ + A™e™),

» 2"dstrain smoothing within elements
1. . .
g = E(s(l) +8%),

1. A
g = E(g(l) +£9),

£ = %(é(z) +89),

p=1/6 > Smoothed strain field

\X c(p.q) — —
§(e)={1——1 (r+s—2p)}:a+ P 57 Pye
\ q-p q-p
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The Strain-Smoothed Element (SSE) Method

> Previous strain > Strain-Smoothed
smoothing methods Element (SSE) method

+* Special smoothing domains. ¢ Finite elements.

+* Constant strain fields. ¢ (Bi-) linear strain fields.

** Some improvement in accuracy. +» Very high accuracy.

Edge-based smoothing domain FEM domain (w/ SSE method)
24/89



The 4-node tetrahedral element

+* Geometry and displacement interpolations
4 T
« x=Y h(rst)x with x=[x vy z].
i=1
4 T
= u=> h(rshu with u=[u v, w].

i i
i=1

» Shape functions: h =1-r-s-t, h,=r, h,=s, h, =t

+* Strain field
4-node tetrahedral
s @ _BOY® with u® =[u, u, u, u4]T, 3D solid element

B®=[B, B, B, B,]

»  The 4-node tetrahedral element has a constant strain field.

* Lee C, Lee PS. A new strain smoothing method for triangular and tetrahedral finite elements. Comput Methods Appl Mech
Eng 2018;341:939-955. 25/89



The 4-node element with the SSE method

¢ The strain-smoothed element (SSE) method for the 4-node element

Step 1 of 2 Strain smoothing between the target element and each neighboring element.

£® : Strain of the target element.

£i(k) : Strain of the ™ element neighboring

Target element
J the kth edge of the target element.

> If neighboring element exists through kt" edge,

1 L
a(k) _ (e) o (e) 2: (k) (k)
(e) (k) i=1
V¥ 4+ E V.

i=1

» If there is no neighboring element,

200 _ g(®
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The 4-node element with the SSE method

m Construction of the smoothed strain field through Gauss points.

» Strain smoothing within elements

4t p=(5-+5)/20
q=(5+3v5)/20

(é(l) +8@ 180 1 84£0),

a4 4

(f-:(l) +8W 4+ 80 184 £0),

(8(2) +8W 4180 1 84+0),

2 (6)

1 A A
== (&® +8® +8© 1 24+£@®),

» Smoothed strain field

@ = {1——(r+s+t 3p)}: y TP STPe 7P
q-p q-p q-p

27/89



Basic numerical tests

+» Zero energy mode test

* The number of zero eigenvalues of the stiffness matrix of unsupported elements is counted.

= The 2D and 3D solid elements should have three and six zero eigenvalues, respectively.

¢ Isotropic element test

= The finite elements should give the same results regardless of the node numbering sequences used.

¢ Patch tests
=  The minimum number of DOFs is constrained to prevent rigid body motions.
= Proper loadings are applied to produce a constant stress field.

= To satisfy the patch tests, a constant stress value should be obtained at every point on elements.

F}’

F,

Membrane Membrane Bending Shearing Mesh for

patch test | patch test Il patch test patch test 3D patch test
28/89



Numerical examples (2D)

*+* Finite elements considered

= Standard FEM : 3-node triangular element
= ES-FEM : 3-node triangular element with the edge-based S-FEM

= SSE (proposed) :3-node triangular element with the SSE method

+* Evaluation method

2 ‘
I’ef e h e

= Convergence curves obtained using the energy norm E; = ‘ > with ||u||: = IQaTch.

ref @

= Displacements and stresses.

++ Reference solution

+»+ Reference solutions are calculated using a 64 x64 regular mesh of 9-node 2D solid elements.

N | Testelements | Reference
| 2 18 50
4 50 162
162 578
A mesh of n Degrees of
16 578 2,178
NxN elements - freedom
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Numerical examples (2D)

1) 2D block problem

Force

Distributed compression force P =1.
Boundary condition

Bottom edge is clamped.

Material property (plane stress condition)

E=3x10", v=0.3, p=1x10"

A 1 A
2
EEAWIWVAALAAIRARRAAAARARARAR
[« a
2
Regular Distorted
mesh mesh

Regular meshes (N x N elements)
N=24a3,16.

Distorted meshes ( N, elements)

N, =6, 32, 128, 500.

The distorted meshes are acquired through

the commercial software ANSYS.
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Numerical examples (2D)

1) 2D block problem

= Convergence curves.

Regular mesh

!

o

(2}
T

2
e

log E

More accurate

1
N
~

T

|

w

w
T

—&— Standard FEM (linear)
—A—ES-FEM

—O&— SSE (proposed)

1 1 1 —l

-1.2 -0.9 -0.6 -0.3
logh

More elements

h=1/N

S—

2
e

log E

-0.3

-0.6

-0.9

-1.2

-1.5

-1.8

-2.1

-2.4

-2.7

-3.3

Distorted mesh

-1.2 -0.9 -0.6 -0.3
logh

ATITV TR
——
2
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Numerical examples (2D)

2) Column under a compressive load problem

gl

K3 _‘\ A = Force
\ Compressive load P =5x10°.
\\ * Boundary condition
Q Bottom edge is clamped.
Y
10 1 I > X = Material property (plane stress condition)
g E=10° v=0.
{\\ = Regular meshes (N x5N elements)
\»
A\ N = 8, 16.
\
RN A > X
T
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Numerical examples (2D)

2) Column under a compressive load problem

= von Mises stress distributions for the regular mesh (N = 8).

Standard FEM SSE (proposed)

%107

25
3r 2
15
1

0.5

Reference
x 33/89



Numerical examples (3D)

*+* Finite elements considered

= Standard FEM
=  FS-FEM
= ES-FEM

= SSE (proposed)

: 4-node tetrahedral element
: 4-node tetrahedral element with the face-based S-FEM
: 4-node tetrahedral element with the edge-based S-FEM

: 4-node tetrahedral element with the SSE method

+¢* Evaluation method “
u

2 2
i
2

ref

= Convergence curves obtained using the energy norm E? = with ||u||623 = IgsTch.

ref e

= Displacements and stresses. ‘

+* Reference solution

= Reference solutions are calculated using a 16x16x 16 regular mesh of 27-node 3D solid elements.

| N[ Testelements | Reference
| 2 81 375
A mesh of Degrees of
NN elorment 4 | 375 2,187 , gd
XNXN elements “ 2187 14.739 reeaom
(N=4) | 16 | 14,739 107,811 (DOFs) per N
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Numerical examples (3D)

1) Lame problem

=  Force

Internal pressure p=1.

= Boundary condition

Symmetric boundary conditions are imposed.

= Material property

E=1x10°, v=0.3.

= Regular meshes (N xN x N elements)

N =2,4,8.
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Numerical examples (3D)

1) Lame problem k

= Convergence curves.

0 T T E,
'03 B 7 Y D
c B
o i —>
0.6 4
-0.9 7

= von Mises stress at point G.

Standard SSE
| FEM (proposed)

' 106.2858  125.3865  150.2877  166.7563
(38.00) (26.86) (12.33) (2.73)

log E?

2.1 .
2l | 132.7286 143.6493 157.3288 166.3370
' (22.58) (16.20) (8.22) (2.97)
97 —&— Standard FEM
' —&— FS-FEM 149.4181  155.2355  162.2212  166.6823
3] —A— ES-FEM (12.84) (9.45) (5.37) (2.77)
—&— SSE (proposed)
33l ] 16 159.4205 162.5707 167.5228 169.5621
- (7.00) (5.17) (2.28) (1.09)
-09 -0.6 -0.3

e Reference solution: 171.4286

logh PR :
* Thevaluesin () indicate relative errors (%).
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Topic 2

Strain-smoothed 4-node quadrilateral 2D solid element

O

O

4-node quadrilateral
2D solid element

37/89



The 4-node quadrilateral element " Smoothing operation
g, = IQ(k)a(x)CDk(x)dQ.

. / . . .
% Standard 4-node quadrilateral element valid for strains with constant values.

v'  Geometry and displacement interpolations v Standard bilinear shape functions:
4 ~ A
. )(:Z:hi(r,s))(i with X, =[xi Y, ]T. h=@Q-r)@-s)/4, h,=@0+r)1-s)/4,
i=1

. h,=@+r)A+s)/4, h,=A-r)1+s)/4.
. u:Zhi(r,s)ui with u =[u v].

S A
v’ Strain field 4 3
@ 9
= g™ =vu™  with u™=[u, u, u, u,l.
« ™ =B™u™ with B™=[B, B, B, B,] g
= The 4-node 2D element has a non-constant
strain field due to rs term in shape functions .
@ L]
1 2

The strain smoothing method cannot be applied to standard 4-node element.
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The 4-node element

¢ Comparison of the piecewise linear & standard bilinear shape functions

— Piecewise linear shape function 4,
h, (and h,) — Standard bilinear shape function /,

1
0.8
0.6

0.4

0.2

= The two shape functions corresponding to node 3 along element edges and a diagonal r =S are depicted.

= The two shape functions show different variations along the diagonal.

39/89



The 4-node element

** Modified 4-node quadrilateral element

=  Smoothing operation

g, = IQ(k)s(x)CDk(x)dQ.

v" valid for strains with constant values.

The element domain is subdivide into four non-overlapping triangular domains (from T1 to T4).

v'  Geometry and displacement interpolations

" X:ihi(r:s)xi with X, =[x Yi]T-
. u=Z4:hi(r,s)ui with u, =[u, v .

v' Strain field
ke™ =BMy™ with k=1, 2,3, 4,
kB(m):l:kBl sz k83 kB4:|,

u™ =[u, u, u, u,].

= The 4-node 2D element has piecewise

constant strain fields defined for sub-triangles.

v Piecewise linear shape functions (on T1):

h=Q0-2r-s)/4, h,=@1+2r-s)/4,
h,=(1+s)/4, h,=1+5s)/4.
S 4 T: Sub-triangles
4 3
.- »
\ T3 ,
¥

v

R
N %l
\
N %
4 2 [2
’
N
% N
’ N

Tl
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The 4-node element with the SSE method

+¢* The SSE method for the 4-node element

Step 1 of 2 Strain smoothing between the target element and each neighboring element.

“e(™ : Strain of the kth sub-triangle of the

the target element.

£®) : Strain of the sub-triangle (belonging to

neighboring element) through the kt"edge

of the target element.

> If neighboring element exists through kt" edge,

2 — 1
A

(A™ kg™ 4 ARg0)Y
+ AW

» If there is no neighboring element,

g0 _ kg(m
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The 4-node element with the SSE method

m Construction of the smoothed strain field through Gauss points.

T: Sub-triangles, G: Gauss points

» Strain smoothing within elements

A S
! g = 1 (A" &P+ 4™ V) for Gl
N //' 8] - A(IH)+A(m) 4 1 ,
G4 T3 G3 1 :
X, 4 1
\ T —_ = (4mad (m) a(2)
82 - A(m)+A(1n) Al € +A2 € ) fOI‘ G2,
. . 1 (
T4 e T2 >
/// \\\ 14 1
T —_ — (Am a2 (m) a(3)
83 - A§”1)+A(n1) (AZ € +A3 o ) fOI' G3,
2 3
X ¥
¢ T1 N
/Gl Gz\ o 1 (A(m) é(?)_'_A(m) é(4)) f G4
V4 e I SR ; - ‘
@ @ 4 A§”Z)+AL(‘”7) 3 4

» Smoothed strain field

£m :iﬁi(r,s)ﬁi with ﬁ(r,s):%(%—nirj(%—é’ir}

[771 M, s 774]:[1 -1 -1 1]’ [gl &, G 54]:[1 1 -1 _1]-

42/89



Numerical examples (2D)

*+* Finite elements considered

= Q4 : 4-node quadrilateral element
= ES-Q4 : 4-node quadrilateral element with the edge-based S-FEM
: incompatible modes 4-node quadrilateral element

= SSE-Q4 (proposed) :strain-smoothed 4-node quadrilateral element (SSE method)

+* Evaluation method

2 2
Jures | =0
= Convergence curves obtained using the energy norm E? = ‘ e e ”2 h”e with ||u||: = IQaTch.
u

ref

e
= Displacements and stresses. ‘ e

+* Reference solution

= Reference solutions are calculated using a 64 x64 regular mesh of 9-node 2D solid elements.

Test elements
18 50

50 162
A mesh of 162 578 Degrees of
NxN elements 578 2178 freedom
(N =4) 8,450 33,282 (DOFs) per N
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Numerical examples (2D)

1) Cook’s skew beam problem

44

.
K

ALELEELAEEEEALARE LA LAV

le
<

48

[

/
/j

bbb

s

N

1/16

44

Force

Distributed shearing force f, =1/16.

Boundary condition

Left edge is clamped.

Material property (plane stress condition)
E=3x10", v=0.3.

Regular and distorted meshes ( N x N elements)

N =2, 4,8, 16.

N

N
‘\l

NN
W

NN

N

N
\\\

NRELRY

NN\
NN
N R

Y
NN
N

7

A\
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Numerical examples (2D)

1) Cook’s skew beam problem
* Normalized horizontal displacements (u, /u . ) at point A. a | / "
. > X
Regular mesh Distorted mesh
N . . . l-l ' fl“ ‘fl\- 1_' ,@\fl\ Ji\_
More
accurate
0.8
u,/u,, u,/u,,

0.61

—B—0Q4

—A—BS-Q4
ICM-Q4
0.4l —S— SSE-Q4 (proposed) | 6 |
2 4 8 16 2 4 8 16
N N

—

More elements
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Numerical examples (2D)

1) Cook’s skew beam problem

= Computational efficiency curves.

Aol O
. a5
RS

More accurate -4+

—=—Q4
—A—ES-Q4
ICM-Q4
—&— SSE-Q4 (proposed)

-1 -0.8 -0.6 -0.4 -0.2 0

log (Computation time)

44 e / “

—)

More computation time

* Computation times taken from obtaining stiffness matrices to solving linear equations are measured.

* Computations are performed in a PC with Intel Core i7-6700, 3.40GHz CPU and 64GB RAM.

* The CSR format is used for storing matrices and Intel MKL PARDISO is used for solving linear equations.
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Numerical examples (2D)

2) Block under complex forces problem

A

/=32

T

4

f

A

X

¥ fi=(+1)

()

Q)
T

C)
117711

)
I

le

i

// / / //1///

N

2

,l

Force

Compressive body force fg =(y+1)° and
eccentric tensile traction f, =3.2.

Boundary condition

The block is supported along its bottom.
Material property (plane stress condition)

E =3x10", v=0.25.

Regular and distorted meshes (N x N elements)

N =2, 4,8, 16.

s
Ngs

Iy

AUV
i—— i g% Br-\
P ; §

H7VD‘\§§:

WA
-

2x%2

16x16
* 47/89



Numerical examples (2D)

2) Block under complex forces problem

2 —
* von Mises stress distributions for the regular mesh (N = 16). Vs f(yﬂ)z
Q4 ES-Q4 J
@ < 5
2

SSE-Q4 (proposed) Reference Tom

2.5 05l |
) -
1"’ 0 L ! ! L L 1 ! ! L

A L5 -1 -0.8 -06 -04 -02 0 02 04 06 08 1

. Y
1
‘ — Q4
0:3 ---- ES-Q4
—— SSE-Q4 (proposed)
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Topic 3

Strain-smoothed MITC3+ shell element for geometric
nonlinear analysis

3-node triangular
shell element
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Shell elements

+¢* Shell behaviors

___l___

Bending Membrane Transverse shear

s Asymptotic behaviors
= The behaviors of shell converges to a specific limit state as the thickness becomes small.
= Three different asymptotic categories:

v" Bending-dominated, membrane-dominated, mixed behaviors.

¢ Locking
= The accuracy of the solution deteriorates rapidly as the thickness becomes small.
= |t happens when the finite elements discretization cannot accurately represent pure bending
displacement fields.

=  Membrane locking, shear locking.
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The MITC3+ shell element

+* The MITC3+ shell finite element.

. Lee, Lee

The shell element has an internal bubble node at element center.
The bubble node only has two rotational DOFs with a cubic bubble function.
Assumed covariant transverse shear strain fields are employed to alleviate shear locking.

Its excellent bending behavior is demonstrated through various linear and nonlinear analyses.

1 X Tying points
2/3 F---¥
& /4 - 1/6
: @® Nodes
tVIZ r O Bubble node 0
Geometry Tying points for the assumed shear strain fields

PS, Bathe KJ. The MITC3+ shell element and its performance. Comput Struct 2014;138:12-23. 51/89



The MITC3+ shell element

+*¢* In membrane problem

=  DISP3 =MITC3+

| Initial mesh

M=025M

mix

7
i
M=M M=075M

DISP3

e e o s e )

EEEEEEEE=F  Initial mesh

M=075M__ _
i
M=05M,, =SBEEF M =025M,,,

Reference

1 M
I —» X 4+)
k >
20

NS I —— | Initial mesh

M=025M

mix

i/l
T M=0.75M

max

MITC3+

DISP3:
displacement-based 3-node shell element
(no treatment for alleviating shear locking).

MITC3+:
3-node shell element with the MITC method.

Reference is obtained using the MITC9 shell
elements.
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The MITC3+ shell element

+* Geometry & displacement interpolations
3 1 4 ]
= X(r,s,&)="X, +&'%,  with X =>"h(r,8)'%, X, =§Zai f(r,s)'V.
i=1 i=1l

= Shape functions: h =1-r—-s, h,=r, h,=s,

1 1
f = hl—% fo f=h-2f, f=h-3f, f,=27rs(-r-5)
" u(r,s,&)=u, +<&(u, +ug,) ‘X : position vector in the configuration at time t.
3 U : incremental displacement vector from the configuration
with U, => h(r,s)u;, attime t to that at time t+at.
i=1

t

Uy :%iai fi(r13)(—0!i "V, + BV, )’
i1

Uy, = _%iz:,ai fi(ris)[(aiz +ﬂi2) tVri ]

o Nodés
2 . O Bubble node
| —_ —_ X 1y72 7
uI _um +§ub1’ uq —C_,:sz- Vi

Geometry of the MITC3+ shell element
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The MITC3+ shell element

¢ Green-Lagrange strain components

. Otgij:%(tgi-tgj—ogi-ogj) with i,j=1,2,3.

= In-plane strain components (i,j =1, 2): j&, = g& +Egert +E2 g6
h t nl__l(tx ty . _Ox 0y ) t b2__1 t t 0 0
whnere Oglj —2 m.i m, j m.i m,j 1 Oglj E( Xbl Xb] Xbl ij)l
1
t bl t t t t 0 0 0 0
0®1ij _E[( Xml ij+ ij Xbl) ( Xml ij+ ij Xbl):|’
t t t
and  'x .= 0 Xn , X, 0 Xb, ‘g, 0 covariant base vectors at time t
or, or, or,
. ) u,;=— :derivatives of incremental displacement vector.
** Incremental strain components or,
t+At 1 t t H 1 -
" &= o0&~ :E(u"' g,+ g;-u;+u;-u;) with 1i,j=1,2,3.
e + 1 e 1 0u, tg. g au,) L{ou, ou, | 1f0Uq ou, g+ ou,,
u .C,‘i_ = i ii WI == — . T ), .. .
0% = ok T o =30 9t 9% oG a [Tal e O Y
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The MITC3+ shell element

¢ Incremental strain components (continued)

" In-plane strain components (i, ] =1, 2): &, = (& + &8 +E7 o6

m bl b2 _ b2
° Ogij 0 Ij 077”’ 0bij = e +077Ij’ i To Ij 077” .
. = e 0L g2 e with el =1('x .U+ X -u
0€i = o€ TS08 TS o8 0% =5\ AmiHm,j mj Ymi )
e =Ly Ly 'X_ U+ XU+ XU
0% T\ i brj T Xmj Upri T Kpi Unj T Xy j-Unj)s
ba_ 1 t
08 ZE( XpiUpyj + Xb,j.ubl,i)'

. 1
e ol = 077|J+§077itj)1+é:2077itj)2 with 077irjn:§um,i'um,j;

1
b1 t
o7ij zz(um,i “Upyj F U Ui T X5 -Upy 5+ X ub2|)

b2 _ 1

t t
ol _E(ubl,i 'ubl,j + Xb,i ’ubz,j + Xb,j 'ubz,i )
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The MITC3+ shell element

+» Assumed transverse shear strain fields

- 0gil\?fIITC3+ — oei'\é”TC3+ + 077i|\:;IITC3+ Wlth |,J :1’ 2, 3
where Oé‘ll\é”TC3+ _é 05183_%05283 +%(051§+ 052/;)"'%06(35_1)’
. 2 1 1 1
ol =§ ogzcs_a 0613 +§(051§+05£)+§oc(1_3r)1

A F D F E
and  oC= &3~ 0813 ~ 0623 T 0623

1 X Tying points

2/3 -

L/ Tying points for the assumed
0 shear strain fields
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The MITC3+ shell element with the SSE method

Step 1 of 4 Decomposition of strain components.

» The covariant in-plane strain components (i, j =1, 2) can be decomposed as follows

_ m b1l 2 b2 : m __ m m

m 1

_ t
where e, =

t m __ 1
- Xm,l 'umlj + Xm,] 'umli y 077” _Eum'l 'um,j.

Step 2 of 4 Matching the coordinate systems of strains of the target and neighboring elements.

> Strain transformation

=m(k) _ m, (k) ¢ (e) (PR AYZO) (k) N
o0& =o&n (T8 -g)(7g;-g")

with i,j,1,n=1, 2.

o : Element centers

> Element centers(r=s=1/3 and £=0) are the
reference points of the coordinate transformation.

» Effect of out-of-plane strains is neglected.

. Lee C, Lee PS. The strain-smoothed MITC3+ shell finite element. Comput Struct 2019;223. 57/89



The MITC3+ shell element with the SSE method

Step 3 of 4 Strain smoothing between the target element and each neighboring element.

» Projected area

AL — (n(e) _n(k))A(k) with n® — (6)93/

(e) (k) _ (k) (k)
g;, n®=®g,7]%g,].

» Smoothed strain

am,(k) _ me) Ae) —m(k) A (k) i
0&i A(e)+A(k) (& A A™) with 1, =1, 2.

» If there is no neighboring element,

am,(k) _ m,(e)
0€ij T o0& -
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The MITC3+ shell element with the SSE method

Step 4 of 4 Construction of the smoothed strain field through Gauss points.

A S
p=1/6
q=4/6
x ¢(p,q)
a(p.p) . b(a,p)
X X
: r
S
~(A)
0 ©jj s
k3 /X/ 2mi(©)
Ny A 0/~if
a
\
m (B)
08@1 >\K
|
|
v

» Strain smoothing within elements

m(A)_ (OAm(3)+ Am(l)) Ong(B)_ (0"m(1)+ "m(2))

oSij —_(og-r-n'(z) + oé'-r-n’(s)) with 1, j=12.

> Smoothed covariant membrane strain field

m,SSE
0jj = [1

with 1, ]=12.

(r+s— 2p)}ogm“\)+ -
- P q-

» The smoothed covariant membrane strain replaces the original

covariant membrane strain.

» For the covariant transverse shear strains, we adopt the assumed strains

of the MITC3+ shell element.
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Numerical examples (Shell / Linear analysis)

+¢ Finite elements considered (flat shell elements)

e

A flat shell element that combines a triangular membrane element with Allman’s drilling
DOFs and the discrete Kirchhoff-Mindlin triangular (DKMT) plate element are combined.
= |t requires 18 DOFs for an element.

= A flat shell element that combines the assumed natural deviatoric strain (ANDES)
triangular membrane element with 3 drilling DOFs and optimal parameters and the DKMT
plate element.

* |t has 18 DOFs for an element.

= As a flat shell element, the edge-based strain smoothing method is applied to the ANDES
formulation-based membrane element with 3 drilling DOFs, and the DKMT plate element
is combined.

= New values of the free parameters in the ANDES formulation are introduced.

= |trequires 18 DOFs for an element.

Shin and
Lee
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Numerical examples (Shell / Linear analysis)

+¢ Finite elements considered (curved shell elements)

=

A continuum mechanics based 3-node shell element with a bubble node.
The bubble node has 2 rotational DOFs which can be condensed out on the element level.
= |t has 15 DOFs for an element.

MITC3+

(e =  The MITC3+ shell element enriched in membrane displacements by interpolation covers.
\lfeci3 = 4 DOFs per node are added and thus the element has 27 DOFs for an element in total.

+¢ Evaluation method ‘ ,
u

ref — Up
2

> with ‘ —uhH: = _[Q Ag" ATd Q.

= Convergence curves obtained using the s-norm E, = u

ref

u

. ref
= Displacements and stresses. s

+s+ Reference solution

= Reference solutions are calculated using a 64 x64 regular mesh of the MITC9 shell elements.
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Numerical examples (Shell / Linear analysis)

1) Cook’s skew beam problem

48

Clamped
44 44

vV =

Force

Distributed shearing force p=1/16.
Boundary condition

Left edge is clamped.

Material property

E=1 v=1/3

Two patterns of meshes ( N x N elements)

N =2, 4,8, 16, 32.




Numerical examples (Shell / Linear analysis)

1) Cook’s skew beam problem Meshl

— Tk Clamped
* Normalized vertical displacements ( V, / V. ) r  w 44

e Y
\

at point A for Mesh I.

= The total number of DOFs when

0.8+ . .
increasing the N.
< 0.6t : : ,
" |—=— Allman, ANDES (OPT), Shin and Lee 1 10000
0.4t --E--Allman | —&— Enriched MITC3+
| B i o ~@— MITC3+, MITC4+, Smoothed MITC3+
--O--Shinand Lee —9— 3+, "4+, Smoothe %
—m— MITC3+
0.2r —&—Enriched MITC3+ | ] & 17500
—&— Smoothed MITC3+ o
A
0Ll — . ; , A
B 4 8 16 S
N by
—D -
b= 5000
=
=
=
o
=
1 2500
0
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Numerical examples (Shell / Linear analysis)

2) Hyperbolic paraboloid shell problem

= Normalized vertical displacements

* Problem description ( w, /w,, )at point D.

Clamped .

w/w,,,
(=]
[=)

Force
Self-weight loading f, =8.
Boundary condition

One end is clamped.

Material property & Thickness
E=2x10", v=0.3, t=0.001.
Regular meshes ( N x2N elements)

N =2,4,8, 16, 24.

Vs
0.4+ / --B-- Allman
p --A-- ANDES (OPT)
2 --O--Shinand Lee
0.2+ //// —a— MITC3+ -
B-— P —@— Smoothed MITC3+
- ¢
0 e — = L L L
2 4 16 24
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Numerical examples (Shell / Linear analysis)

3) Scordelis-Lo roof shell problem

Rigid diaphragm

Force

Self-weight loading f, =90.

Boundary condition

The shell is supported by rigid diaphragms.
Material property & Thickness

E=4.32x10°%, v=0, t=0.25 0.025, 0.0025.

Two patterns of meshes ( N x N elements)

N = 4,8, 16, 32.
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Numerical examples (Shell / Linear analysis)

3) Scordelis-Lo roof shell problem

= von Mises stress distributions for Mesh | when t = 0.25.

MITC3+

N=32

x10°

MITC9 (Reference)

Rigid diaphragm

Mesh I
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Numerical examples (Shell / Linear analysis) Rigid diaphragm

3) Scordelis-Lo roof shell problem

= Computational efficiency curves for Mesh Il when t = 0.025.

—m— MITC3+
—4A— Enriched MITC3+ Mesh 11
0.5+ —@— Smoothed MITC3+| | ® P
-1F > ’4
m‘\
o0
L
15+
2L
25 : ‘ ' '
=955 5 =15 -1 -0.5 0

log (Computation time)

* Computation times taken from obtaining stiffness matrices to solving linear equations are measured.
* Computations are performed in a PC with Intel Core i7-6700, 3.40GHz CPU and 64GB RAM.

* A symmetric skyline solver is used for solving linear equations.
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Numerical examples (Shell / Nonlinear analysis)

1) Cantilever beam subjected to a tip moment problem

20
y
Zﬂ—éIl
<

Regular mesh

I N DN D N N N N N
SIS IS IS IS IS IS SIS SIS SIS IS SIS

Distorted mesh

ESNEVA RSN S SA SN S RS SYES AV

Force

Tip moment M . =107.
Boundary condition

Left edge is clamped.

Material property & Thickness
E=12x10°, v=0.2, t=1,
20 load steps

Regular and distorted 20x2 meshes of
triangular elements.
Regular 40x4 meshes of MITC9 elements

for reference.
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Numerical examples (Shell / Nonlinear analysis)

1) Cantilever beam subjected to a tip moment problem

* Deformed configurations at the load levels M /M =0.25,0.5,0.75, 1.0 for regular mesh.

Initial mesh

EEERES]  Initial mesh M=M

M=025M
e M=0.75M

max

=

M=05M_, RE= M =0.25M

v
i
M =0.75M

max

MITC3+ Smoothed MITC3+ (proposed)

Initial mesh

M =0.75M I

max

M=05M M=025M

mux o = g mux

Reference
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Numerical examples (Shell / Nonlinear analysis)

2) Slit annular plate subjected to a lifting line force problem

Force

Shearing force p,., =0.8.
Boundary condition

One end is clamped.

Material property & Thickness
E=2.1x10", v=0, t=0.03.
10 load steps

6x30 mesh of triangular elements.

12x60 mesh of MITC9 elements for reference.
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Numerical examples (Shell / Nonlinear analysis)

2) Slit annular plate subjected to a lifting

line force problem

= Load-displacement curves

(w; and W ).

—©— MITC3+

Enriched MITC3+
—&— Smoothed MITC3+
Reference

0.8r

0.6

p49 max

0.4r

0.2r
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Topic 4

Acoustic radiation analysis using the strain-smoothed

triangular element

o,

3-node triangular
2D solid element
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Acoustic radiation problem

** Formulation

= Helmholtz equation (reduced wave equation): Ap+k*p=0.

a-1 ¢ =
= The Sommerfeld radiation condition for exterior acoustic problem: lim7 2 {g + jkp] =0.
=

» Galerkin weak form of this problem:

—Iﬂ?n*-‘?pdﬂ + k- Ln'-pdﬂ—jpru‘[ﬁ_u'-vﬂdﬂ —L;t'-M- pdl’ =0.
» Finite element formulation:

[K—k—’m +K5]p =—jpoF,

where

K :ZF: Im B B™dQ - M :éjgﬁ.-n:- N'-NdQ ¥ :éjrgﬁ:-Nr vl

7

B is the differential operator matrix of an element.
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Numerical examples (Acoustic radiation analysis)

1) Circumferentially harmonic radiation from a cylinder

Cylinder 27V
= Force
~—— oy T Pressure p(€)=cos(40) at r=r, .
z " x = Boundary condition
: vtk S
: : % Dirichlet to Neumann (DtN) condition along I, .
Y S r ;
: g & = Material property

. & /Q

: Density: p =1.225 kg/m?,
Wave speed: € =340 m/s.
Wave numbers: (=10, 16, 22.
= Regular meshes ( N x12N elements)

N =2, 3, 4, 10.
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Numerical examples (Acoustic radiation analysis)

1) Circumferentially harmonic radiation from a cylinder

= Pressure distributions for the mesh (N = 3).

(a) T3 (b) SSE-T3

04

-0.6

-0.8

=  Analytical solution:

q (wave number) =10, 16, 22 H® (kr)

PO = A0y

cos(40).
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Numerical examples (Acoustic radiation analysis)

1) Circumferentially harmonic radiation from a cylinder

= Pressure distributions for the mesh (N = 2, 3).

- 1 1 1 1 1 -0. Il 1 1 1 1
0 60 120 180 240 300 360 0 60 120 180 240 300 360

@ 0
— Peleretive =  Analytical solution:
- T3 g (wave number) =10, 16, 22 H® (kr)
ol p(r,0) = —5,— Cos(49).
H,” (k)
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Numerical examples (Acoustic radiation analysis)

1) Circumferentially harmonic radiation from a cylinder

= Pressure distributions for the mesh (N = 3, 4).

I I 1 -0.8 L ! ! 1
0 60 120 180 240 300 360 0 60 120 180 240 300 360

— Peleretive =  Analytical solution:

A T3 g (wave number) = 10, 16, 22 H® (kr

-~ SSE-T3 p(r’ 0) — 211) ( )
H,” (kr,)

cos(40).
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Numerical examples (Acoustic radiation analysis)

1) Circumferentially harmonic radiation from a cylinder

= Pressure distributions for the mesh (N = 4, 10).

— Reference
- T3
—-©- SSE-T3

I I 1 0.8 L L L I 1
180 240 300 360 0 60 120 180 240 300 360

=  Analytical solution:
g (wave number) = 10, 16, 22 Hjl)(kr)

p(r,0) = Wcos(w).
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Topic 5

Variational formulation for the strain-smoothed element

method

In collaboration with
Ph.D. Jongho Park,

Department of Mathematical Sciences, KAIST.
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Variational formulation

+¢* Abstract form

» The standard FEM for linear elasticity: » The SSE method for linear elasticity:
find u, €V, such that find u, €V, such that
a(u,,v)=f(v), vwel, a(m,.v)=f(v), vwel,
with a(u,v) = j _Defu]:¢[v]dQ. with @(u,v) = j _Defu]:g[v]dQ

¢ Setting (mesh, functional space)
» P(K): the collection of all polynomials of degree less than or equal to »# (nonnegative

integer) on a subregion K of €.

= 7,:a geometrically conforming and quasi-uniform triangulation of € with the maximum

element diameter /7 =0.

= Discrete displacement space: V, = {u eV u|r e (R (1)) forall T e I}

» Discrete strain/stress space: W, {E eW : E|T e(R (T))* forall Te T}

f
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Variational formulation

+¢ Original approach of the SSE method
= SSE smoothing operator S,: W, —>W,.

» Discrete strain/stress space: W, = {E eW :E|T e (R (7)) forall T e TH}

1

Take any element T e 7, .

adjacent to T .

= Intermediate smoothed strains (i =1, 2, 3); & = #J' edQ.
[TUT | mor

» The smoothed strains at three Gauss integration points (i =1, 2, 3):
2(Gi) = %(ﬁfﬂ +&™) with {,j.k}={1.2.3}.

» The smoothed strain field € is uniquely determined on 7 by linear interpolation.

» Bilinear form: ﬁ(ll..v)ZIQDS;?E[H]:S;?E[E’]JQ, wLver,.

There exist three elements 7;, 7,, and 7; in
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Variational formulation

+¢ Original approach
» The smoothed strains at three Gauss integration points (i =1, 2, 3):

(G == ("” &) with {i, j.k} ={12.3).

» The smoothed strain field € is uniquely determined on 7" by linear interpolation.

8(GZ)+
q-p q-p

T = [1—q—(r+s 2p)}:(Gl)+ P 2(G3).

¢ Alternative view: twice-projected strain
= |t does not imply modification of the method.
= The alternative view is used only in the process of establishing

variational formulation and convergence theory.
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Variational formulation |

+» Alternative view: twice-projected strain
SSE smoothing operator P, ,: W —>W;, @) 7, » 07, —» ©)7T,

Fo

eT.

.-T-'i" X

(B 8)x) = |—;_|J'T£d£2_ eeW, TeT.,

= Discrete strain/stress space: W,

.-T-'i'

{EEW:E|T e (B, (7))’ forall TE’IW}

» Bilinear form: ﬁ(u,wrjzjﬂDR, eul: P R g[v]dQ, uveVl,.

20 LA

« Lemma 1. Let A be a 3x3 matrix. For k=1, 2, the piecewise smoothing operator P.,

.-'i.'-'i'

commutes with A, i.e., (Ae)=AP. e, ecW.

.-T i _.E'.'i' 2

= Lemma 2. For k=1, 2, the piecewise smoothing operator P., is the (I*(Q))’-orthogonal

ol

projection onto W,

k2 k.h Foll

ie, P.=P. and I B, ,&: 6dQ = I adQ, eocl.

» Theorem 3. Tivo bilinear forms are identical, i.e., it satisfies that

gv]dQ, u,vel,.

2.0 1,;.

I DS e[u]: S,e[v]dQ —I DP, R eu]: P

= Proposition 4. The SSE method has a unique solution.
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Variational formulation

+* Variational formulation

» Constrained minimization problem:

min {%Lﬁ: :D'e, dﬂ—f(u)} subjectto 6, =DBu, 6, =0,.

usl" g =l 6,20,
» Saddle point problem (using the method of Lagrange multipliers):
. 1 _
min max {—Iﬂﬁ: Do, dQ—f(u)+L(DBu —6,):g,dQ +Iﬂ(ﬁl —G,):¢g, dﬂ} :

usl’ g e .0, 1eW) 8220, | 2
» Variational problem: find (u.6,,6,.2,,&,) €V xW, xW, x W, xW, such that

:ﬂDB‘v:E1 dQ+LT1 (-, +£:)dQ+LT: (D76, —&,)dQ=f(v),

velV, 1,eW,, 1,eW,,

| (DBu-6,):8,dQ+| (6,-6,):8,dQ=0, 8 cW,. 8, cW,.

= Proposition 5. The wvariational problem has a unique solution (u.6,.6,.g.8,)
EV W, xW, xW xW,.

» Remark 6. From Proposition 5, we observe that the Lagrange multipliers € and g, in fact
play a role of the strain field.
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Variational formulation

** Variational formulation

= Galerkin approximation: find (u,.6,,.6,,.5,.8,,) €V, xW,, xW, , xW,, xW, ; such that

LDBV g, dQ+L1:1 : (—El__h+Ez__h)a"!.’l+L1:2 (D70, , —&,,)dQ=f(v),
vel,, TeW,, T,eW,,,

| (DB, —6,,):8,dQ+| (s,,~6,,):8,dQ2=0. 8 W,;. 8,eW,;.

1) v=0 and 1,=0 — ¢g,=E,,,.
2) v=0 and 1,=0 — azrh:D_lﬁM.
3) 7,=0 and 7,=0 — [ DP,,R B, :B R BvdQ=/(v), vel,.

Theretfore, the SSE method can be derived from the proposed variational principle.

A convergence theory for the SSE method will be studied

based on the proposed variational formulation.
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4. Conclusions & Future works
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Conclusions

1. The SSE method has been developed for the linear 2D & 3D solid elements.

=  The methods require no additional DOFs and no special smoothing domains.
*» The elements provide more accurate solutions, especially more continuous strain/stress fields.

2. The SSE has been extended to 4-node 2D solid elements and 3-node shell elements.

= The piecewise linear shape functions are used for the extension to the 4-node elements.
=  For the extension to the shell elements, the strain components are decomposed and transformed
in a proper way, and then the SSE method is applied.

3. The strain-smoothed elements are still effective in geometric nonlinear analysis.

4. The elements are also effective in acoustic radiation analysis.

5. The variational formulation of the SSE method has been established.
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1. Convergence analysis using the proposed variational principle.

2. Incompressible and nearly incompressible materials.

3. Material nonlinear analyses.

4. Acoustic radiation/scattering analyses.

5. Dynamic analysis.
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