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1. Introduction
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FE model

 High stress gradient region  Crack propagation

Coarse mesh Fine mesh

Original mesh Adaptively refined mesh

Motivation of PU based FEM

 The solution accuracy depends on the meshes used.

 To obtain reliable solution, mesh refinement is frequently required.

Force condition

Boundary condition
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• Enriched FEM

• GFEM (Generalized Finite Element Method)

• XFEM (eXteneded Finite Element Method)
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Duarte. (2012), Lecture note of Delft University
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Standard
FE interpolation

Enrichment

• : standard DOFs

• : enriched DOFs

• : Partition of unity function (shape function)

• : cover function (enrichment function)

 Crack problem : Singular and discontinuous functions

 Wave propagation problem : Harmonic function

 Element performance improvement : Polynomial

iu

)(xjL

ijû

Crack propagation simulation 
without mesh refinement

ih

PU based FEM concepts

 Enriched FE interpolation
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 Various functions suitable for each problem can be applied as the cover function.

 Higher order solution can be obtained by applying polynomial cover functions to existing

linear element meshes.
 Order of interpolation can be chosen arbitrary

 The enrichment functions can be applied to local area adaptively.
 Improve the solution accuracy without local mesh refinement

 Can be combined with mesh refinement

MITC3 shell FE
(Error = 75.8%)

ReferenceAdaptively enriched MITC3
(Error = 6.49%)

Jeon HM, Lee PS, Bathe KJ. (2014), The MITC3 shell finite element enriched by interpolation covers.

No mesh refinement
Adaptively enriched

PU based FEM advantages



2. LD problem & History



• Cover function :                   (linear polynomial)

• Total DOFs = 2 (          ) + 2 (          ) = 4

• Linearly dependent DOFs :        and

• Rank deficiency(RD) = 1(rigid body) + 1(LD)
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Functions in the enriched FE interpolation become linearly dependent.
 When partition of unity and cover function consist of polynomial.

The Linear Dependence(LD) problem occurs.
 Singular stiffness matrix.

1 2ˆ ˆ,ξ ξu u1 2,u u

Linear dependence problem

Standard
FE interpolation

Enrichment

 1D bar example
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Functions in the enriched FE interpolation become linearly dependent.
 When partition of unity and cover function consist of polynomial.

The Linear Dependence(LD) problem occurs.
 Singular stiffness matrix.

Linear dependence problem

 2D cantilever beam – free vibration analysis

 Cantilever beam problem

 Finite element model

 Free vibration modes

Mode
number Reference Enriched element

(Inaccurate results due to LD problem)
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 Babuska and Melenk (1997)
- A pioneer of PU based FEM
- First report of LD problem in 1D
- Design PU function to avoid LD problem (1D)

1990s

2000s

 Oden et al. (1998)
- Elimination linear polynomial term in cover function

 Strouboulis et al. (2000)
- Report that Oden’s work is not enough to avoid LD problem
- Adapt special equation solver

 Tian et al. (2006)
- Suppressing enriched DOFs at essential boundary
- Effective for 2D 3-node triangular and 3D 4-node tetrahedral elements

- Modeling method

2 2{ , , , , }ξ η ξ ξη η

Modification of PU function 

(a), (b) : LD problem occurs
(c), (d) : LD problem removed

Brief history of LD problem

3-node & 4-node elements
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 Oh et al. (2008)
- Flat top PU function (2D)
- Expansion of earlier work (1D, 1997)
- Hong and Lee (2013), An et al. (2014)
- Not easy to construct, artificial constant

2010s  An et al. (2011, 2012)
- Prediction of RD in regular mesh
- 2D 3-node triangular and 4-node quadrilateral elements
- 3D 4-node tetrahedral and 8-node hexahedral elements

 Ham and Bathe (2012)
- Harmonic enrichment function
- Modification of mass matrix to avoid LD problem

 Kim and Bathe (2014)
- A scheme to improve finite element solution by use of cover functions
- Enriched 2D 3-node triangular and 3D 4-node tetrahedral elements
- Suppressing enriched DOFs at essential boundary (Tian’s work, 2006)

(1 ) consistent lumpedα α  M M M

2D and 3D elements

 Jeon et al. (2014, 2018)
- Enriched 3-node triangular shell elements (cover function : linear polynomial)
- Suppressing enriched DOFs at essential boundary (Tian’s work, 2006)

Brief history of LD problem

2D Flat-top PU function
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3-node
triangular

4-node
quadrilateral

4-node
tetrahedral

6-node
prismatic

8-node
hexahedral

5-node
pyramidal

• 2D 3-node triangular 
• 3D 4-node tetrahedral

• 2D 4-node quadrilateral 
• 3D 5-node pyramidal 
• 3D 6-node prismatic 
• 3D 8-node hexahedral

 Tian’s approach
(suppressing enriched DOFs at essential boundary)

element
element
element
element

element
element

Resolved

Still remain

 3D solid finite elements

 2D solid finite elements

Research purpose



Research purpose

 Resolution the linear dependence problem

 Topic 1-1. Development of the enriched 4-node 2D solid finite element

 Topic 1-2. Development of the enriched 3D solid finite elements
 Suppression of the enriched DOFs at essential boundary

 Application of new shape function to FE interpolations

 Investigation on the performance of the new enriched elements

4-node
quadrilateral

6-node
prismatic

8-node
hexahedral

5-node
pyramidal

Requirements

• Resolving the LD problem  (in a simple and effective way)

• Spatially isotropic behavior

• Pass the patch test and zero energy mode test

• Good convergence behavior

• Adaptive use of the cover function
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Research purpose

 Resolution the linear dependence problem

 Topic 1-1. Development of the enriched 4-node 2D solid finite element

 Topic 1-2. Development of the enriched 3D solid finite elements
 Suppression of the enriched DOFs at essential boundary

 Application of new shape function to FE interpolations

 Investigation on the performance of the new enriched elements

 Adaptive use of cover functions

 Topic 2. Automatic procedure to improve FE solutions
 Error indicator that selects the order of cover functions for each node

 Feasibility of automatically improving FE solutions

 Enrichment scheme for smoothed finite element

 Topic 3. Enriching strain-smoothed 3-node solid element
 Polynomial enrichment for strain-smoothed element

 Investigation on the performance of the enriched strain-smoothed element
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3. Research topics



Topic 1-1. Enriched 4-node 2D solid element



u

û

: Standard finite element interpolation

: Additional higher order interpolation 

4-node quadrilateral element (n = 4) 3-node triangular element (n = 3)
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Applying polynomial as the cover function

where





 The enriched finite element interpolation of displacement u

Enriched 2D solid finite elements
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 Linear cover function (                                                 )

 Enriched DOFs are suppressed at essential boundary (Tian’s approach)

 PU function (   ) : 4-node quadrilateral(bilinear shape function),  3-node triangular(linear shape function)ih
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Investigation of the LD problem

 A 4-node quadrilateral element and a 3-node triangular element

(        : constants)
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 When the enriched DOFs are suppressed at essential boundary (simple and effective)

 3-node triangular element (linear shape function) : LD problem is resolved.

 4-node quadrilateral element (bilinear shape function) : LD problem still exists.

The key idea is to resolve the LD problem

Employ piecewise linear shape function for 4-node quadrilateral element

 Shape function requirements

• Kronecker delta property:                        with

• Partition of unity:

• Compatibility: linear variation along edges of the element.

• Completeness: displacement interpolations able to represent rigid body modes and constant strain states.

ˆ ( , )i j j ijh r s δ , 1, 2, 3, 4i j 

4

1
ˆ 1ii
h




Development of new enriched 4-node 2D element

 LD problem in 2D solid elements
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Triangular subdivision of
the 4-node quadrilateral element

ˆ ˆˆ ˆ( , )i i i ih r s a b r c s  

1 1
ˆ ˆ(1,1) 1, (1,1) 0h h 

1
ˆ (1 2 ) / 4h r s  

 The linear shape function on each sub-domain

•

 Requirements of the linear shape function (   ) on the T1

•

•
1
ˆ (0,0) 1/ 4h 

: Kronecker delta property at nodes

: Partition of unity at center point

 The linear shape function(   ) on the T1

•

1ĥ

1ĥ

Bilinear shape function Piecewise linear shape function

Piecewise linear shape functions
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New enriched 4-node 2D element

 Geometry and displacement interpolations

Global and nodal local coordinate systems

Natural coordinate system 22



 Resolving the LD problem

 Spatially isotropic behavior

 Pass the patch test and zero energy mode test

 Good convergence behavior

 Adaptive use of the cover function

Requirements

 Force vector :

 Applying boundary condition : Suppressing enriched DOFs (     ) 

T

( )

( )

1

ˆ
m

f

e
m S

S
m S

R dV


  H f

ˆ iu

Finite element models for basic tests
(a) Isotropy and zero energy mode tests
(b) Patch tests

New enriched 4-node 2D element

 Force and boundary condition
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PU function
• Previous: Bilinear
• New: Piecewise linear

Mesh
(a) :  square mesh
(b) : trapezoidal mesh
(c) : distorted mesh.

RD : # of zero eigenvalues

d : order of cover function

Element # of element layer RD / Total DOFs 

  Square mesh  Trapezoidal mesh  Distorted mesh 

  d = 1 d = 2  d = 1 d = 2  d = 1 d = 2 

Previous 1 2/13 6/25  2/13 6/25  0/13 0/25 

 2 6/43 18/85  6/43 18/85  0/43 0/85 

 4 14/139 42/277  14/139 42/277  0/139 0/277 

 8 30/475 90/949  30/475 90/949  0/475 0/949 

New 1 0/13 0/25  0/13 0/25  0/13 0/25 

 2 0/43 0/85  0/43 0/85  0/43 0/85 

 4 0/139 0/277  0/139 0/277  0/139 0/277 

 8 0/475 0/949  0/475 0/949  0/475 0/949 

 

LD problem exists. (RD is observed)

LD problem is resolved. (RD is NOT observed)

Previous

New

Previous

New

Investigation of the LD problem
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Regular meshes Distorted meshes

δ

0.25δ Type 1 (             )
Type 2 (             )
Type 3 (             )

0.50δ 
0.75δ 

Distortion type

δ

Quadrilateral (N=4) Triangular (N=4) Quadrilateral (N=8) Triangular (N=8)

(N : the number of element layers along an edge)

 Body force (m=5)

mxeyxu my cos)1()1( 2222 

mxeyxv my sin)1()1( 2222 

,xy yy yxB Bxx
x y

τ τ ττ
f f

x y y x

     
        

      

 Boundary condition

 Material property
71.0 10 , 0.3E ν  

0u v  1y  at

Numerical examples

 Ad-hoc problem

25



 Quadratic elements
• QUAD9 : standard 9-node quadrilateral element
• TRI3-d1 : 3-node triangular element enriched by linear covers
• QUAD4-d1 : new 4-node quadrilateral element enriched by linear covers

 Cubic elements
• QUAD16 : standard 16-node quadrilateral element
• TRI3-d2 : 3-node triangular element enriched by linear covers
• QUAD4-d2 : new 4-node quadrilateral element enriched by linear covers

Quadratic elements Cubic elements

Standard StandardEnriched Enriched
QUAD9 TRI3-d1 new QUAD4-d1 QUAD16 TRI3-d2 new QUAD4-d2

Numerical examples

M
or

e 
ac

cu
ra

te

More elements

Optimal 
Convergence

rate
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 Material properties :                      ,

 Case 1 : Standard QUAD4, TRI3 (coarse mesh) [1,532 DOFs]

 Case 2 : Standard QUAD4, TRI3 (fine mesh) [5,268 DOFs]

 Case 3 : Adaptively enriched (coarse mesh) [5,148 DOFs]

9102.7 E 3.0

Case 1
(TRI3: 546 elements)

(QUAD4: 360 elements)

Numerical examples

Case 2
(TRI3: 198 elements)

(QUAD4: 2289 elements)

Case 3
(TRI3: 546 elements)

(QUAD4: 360 elements)

 Wheel problem
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Standard linear elements

Reference
DOFs = 74,444

Error = 19.59%
DOFs = 1,532

Error = 3.75%
DOFs = 5,268

Error = 0.66%
DOFs = 5,148

Case 1
(coarse)

Case 2
(fine)

Case 3
(coarse)

Adaptively enrichedReference solution

• The solution accuracy is improved by using finer mesh or by applying the cover functions.

• The adaptive use of the cover function is very effective in accurately predicting stress.

Numerical examples
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 Quadratic elements

 QUAD9 : the standard 9-node element

 QUAD4-d1 : the enriched 4-node element with linear covers

 Cubic elements

 QUAD16 : the standard 16-node element

 QUAD4-d1 : the enriched 4-node element with quadratic covers

 Consideration

 Numerical integration points (new enriched elements require approximately 1.3 and 1.5 times)

 Stiffness matrix information

 Actual computational time of the Ad-hoc problem (assembling stiffness matrix, solving equations)

(3ⅹ3 points) (3ⅹ4 points)

QUAD9 QUAD4-d1 Ad-hoc problem

N : # of element layer

Regular mesh (N=4)

Standard elements

New enriched elements

Computational cost
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 Stiffness matrix structures  Computational time

N 
 

Standard 9-node finite element 
 

 
New enriched 4-node element 
with linear covers 

 
Stiffness 
construction 

Equation 
solver 

Total  
Stiffness 
construction 

Equation 
solver 

Total 

8 0.02 0.00 0.02  0.02 0.02 0.03 

16 0.05 0.06 0.11  0.09 0.05 0.14 

32 0.39 0.81 1.20  0.48 0.56 1.05 

64 1.09 12.33 13.42  1.58 8.38 9.95 

128 3.66 175.50 179.16  6.56 115.30 121.86 

• The new enriched elements take more time to construct the stiffness matrix

• Solving the linear equations generally takes less time.

• As the number of elements used increases, the solving time becomes dominant.

QUAD9 QUAD4-d1 [sec]

Computational cost

30
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Topic 1-2. Enriched 3D solid elements



 The geometry and displacement interpolations




1 1

ˆ ˆˆ ˆ( , , ) ( , , ) ( , , )
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i i i i
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( , , ) ( , , )
n

i i
i

r s t h r s t


x x

8-node hexahedral
element (n = 8)

6-node prismatic 
element (n = 6)

5-node pyramidal
element (n = 5)

4-node tetrahedral 
element (n = 4)

Enriched 3D solid finite elements formulation

 Bases of complete polynomials
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 Linear shape function on each sub-domain : 

 Shape function requirements

• Kronecker delta property (                           with                         )

• Partition of unity:

• Compatibility (continuous displacement interpolation across the element boundaries)

• Completeness (able to represent rigid body modes and constant strain states)

ˆ ( , , )i j j j ijh r s t δ , 1, ,i j n 

1
ˆ 1

n

ii
h




ˆ ˆ ˆˆ ˆ( , , ) ( ) /i i i i ih r s t a b r c s d t n   

Sets of piecewise linear shape functions

 Tetrahedral sub-domains for each element
8-node hexahedral element (n = 8) 5-node pyramidal element (n = 5)6-node prismatic element (n = 6)
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i i

i i

1.0

0.0

0.2

0.4

0.6

0.8

n
ih

1.0

0.0

0.2

0.4

0.6

0.8

ˆn
ih

 Triangular face: linear variation, quadrilateral face: piecewise linear variation.
 New enriched elements and enriched tetrahedral element are compatible with each other.

Sets of piecewise linear shape functions

 Shape functions of the standard finite element method

 Piecewise linear shape functions

i
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 PU function
• Previous : Shape function of the standard FEM
• New : Piecewise linear shape function

 RD : # of zero eigenvalues

 d : order of cover function

 New enriched prismatic and pyramidal elements 
are also free from the LD problem.

• Division of hexahedron into two prisms

• Division of hexahedron into six pyramids

LD problem exists.
(RD is observed)

LD problem is resolved. 
(RD is NOT observed)

Previous

New

Previous

New

Investigation of the LD problem
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 Body force (m=5)

( , , )cos sin cos

( , , )sin cos cos

( , , )cos cos sin

u g x y z mx my mz

v g x y z mx my mz

w g x y z mx my mz
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
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yx yy yzB
y

zyB zx zz
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ττ τ
f

x y z

τ τ τ
f

x y z

ττ τ
f

x y z

  
    

   
   

    
   

  
    

   

 Boundary condition

 Material property
71.0 10 , 0.3E ν  

0u v w   1y  at

2 2 2 2 2 2( , , ) (1 ) (1 ) (1 ) myg x y z x y z e   

Numerical examples

 Ad-hoc problem
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Quadratic elements (HEX27, PRI18, HEX8-d1, PRI6-d1, TET4-d1)

• HEX27 : standard 27-node hexahedral element
• PRI18 : standard 18-node prismatic element
• HEX8-d1 : new 8-node hexahedral element enriched by linear covers
• PRI6-d1 : new 8-node hexahedral element enriched by linear covers
• TET4-d1 : 4-node tetrahedral element enriched by linear covers

Standard Enriched
HEX27 TET4-d1new HEX8-d1 new PRI6-d1PRI18

 Quadratic elements

Numerical examples
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Cubic elements (HEX64, PRI40, HEX8-d2, PRI6-d2, TET4-d2)

• HEX64 : standard 64-node hexahedral element
• PRI40 : standard 40-node prismatic element
• HEX8-d2 : new 8-node hexahedral element enriched by quadratic covers
• PRI6-d2 : new 8-node hexahedral element enriched by quadratic covers
• TET4-d2 : 4-node tetrahedral element enriched by quadratic covers

Standard Enriched
HEX64 TET4-d2new HEX8-d2 new PRI6-d2PRI40

 Cubic elements

Numerical examples
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 Material properties :       

 Case 1 : Standard 3D solid elements (coarse mesh) [3,435 DOFs]

 Case 2 : Standard 3D solid elements (fine mesh) [13,854 DOFs]

 Case 3 : Adaptively enriched (coarse mesh) [9,924 DOFs]

112.0 10 , 0.3, 7650E ν ρ   

No cover

Linear covers

Quadratic covers

point P

Numerical examples

 Connecting rod problem

Case 1
(HEX8: 428, PRI6: 86,
PYR5: 0, TET4:1044) 

Case 2
(HEX8: 2540, PRI6: 8,

PYR5: 246, TET4:3369) 

Case 3
(HEX8: 428, PRI6: 86,
PYR5: 0, TET4:1044) 

Boundary condition

Force condition
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• The solution accuracy is improved by using finer mesh or by applying the cover functions.

• The adaptive use of the cover function is very effective in accurately predicting stress.

Case 1
Standard linear elements
(Coarse mesh)

Case 2

Reference

Case 3
Adaptively enriched
(Coarse mesh) 

Case 2
Standard linear elements
(Fine mesh)

Reference
DOFs = 96,393

Error = 37.30%
DOFs = 3,435

Error = 19.30%
DOFs = 13,854

Error = 1.41%
DOFs = 9,924

Numerical examples
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Mode 
Number

Reference Enriched 3D elements with linear covers

New Previous
Pre                         viou s       

Due to the LD problem,
inaccurate free vibration mode is calculated.

Since the LD problem is resolved,
accurate result is obtained stably.

 Free vibration analysis

Numerical examples
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Closure (Topic 1)

 New enriched 2D and 3D solid elements are proposed.

 Piecewise linear shape functions are adopted for geometry and displacement interpolations

 The elements are free from the linear dependence problem

 Through numerical examples, its convergence and effectiveness are demonstrated. Adaptive use of

the cover functions improves the solution accuracy effectively.
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Topic 2. Automatic procedure to improve FE solutions



Automatic procedure to improve FE solutions

 Three steps of the automatic procedure

MITC3 shell FE
(Error = 75.8%)

Adaptively enriched MITC3
(Error = 6.49%)

Reference

Step-1 (1st FE analysis)

• Construct FE model
• Perform FE analysis

Step-2
• Calculate error indicator
• Select cover functions

Step-3 (2nd FE analysis)

• Update FE model
• Perform FE analysis

Error indicator & scheme for the adaptive use of cover functions are needed.

Requirements for error indicator and scheme 

 Simple and computationally efficient
 Asymptotically converge as the error converges
 Appropriate for selecting cover order for each node
 Minimum artificial parameters
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• :  stress at node i

• :  largest stress jump at node i

• :  characteristic length of FE model

• :  mesh size

Error indicators

 Previous research (2014, Kim and Bathe)

 Only consider 3-node 2D element.

 Based on stress jump at each node.

 Proposed for the adaptive use of cover functions.

 Several artificial parameters in the error indicator.      

βτ
τ i
i

e mean c

J h
M

γ τ L

 
  

 

τ
iJ

iτ



 Proposed error indicators

 Consider both 3-node and 4-node 2D element.

 Minimum artificial parameters.

 Based on both stress jump and stress value. 


1/2τ

τ i mean i i
i

mean mean mean c

J J τ χ
M

τ τ τ L

          
     

1/2τ
τ i i
i

mean c

J χ
M

τ L

  
      

 Type - 1   Type - 2  
• :  mean value of        over FE model

• :  mean stress over FE model

• :  diameter of node i

meanJ

meanτ

cL

iχ

h

τ
iJ

Related to stress jump

Related to stress value

0

0 1

1 2

2

0

1
( )

2

3

τ
i
τ
i
τ
i
τ
i

if M γ

if γ M γ
d i

if γ M γ

if γ M

 
   

 
 
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Error indicators

 Ad-hoc problem

1

1 N

i
i

J J
N 

 

1

1 N

i
i

ε ε
N 

 

1 1

1

1 N
type type
avg i

i

M M
N 

 

2 2

1

1 N
type type
avg i

i

M M
N 

 

 Stress error [              ]

 Stress jump [              ]

 Error indicator (type 1) [              ]

 Error indicator (type 2) [              ]

(N=4) (N=8)

(N : the number of element layers along an edge)

 Body force (m=5)

mxeyxu my cos)1()1( 2222 

mxeyxv my sin)1()1( 2222 

,xy yy yxB Bxx
x y

τ τ ττ
f f

x y y x

     
        

      

 Boundary condition

0u v  1y  at
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Error indicators

 Ad-hoc problem

7.5

7.0

6.5

6.0

5.5
-2.2 -2.0 -1.8 -1.6 -1.4 -1.2 -1.0 -0.8

-0.5

-1.0

-1.5

-2.0

-2.5

1

1 N

i
i

J J
N 

 

1

1 N

i
i

ε ε
N 

 

1 1

1

1 N
type type
avg i

i

M M
N 

 

2 2

1

1 N
type type
avg i

i

M M
N 

 

 Stress error [              ]

 Stress jump [              ]

 Error indicator (type 1) [              ]

 Error indicator (type 2) [              ]

log10(h)

lo
g1

0(
av

er
ag

e 
va

lu
e)

 ,J ε  1 1,type type
avg avgM M
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0 0.10

( ) 1 0.10 0.20

2 0.20

τ
i
τ
i
τ
i

if M

d i if M

if M


  
 

Error indicators

 Type-1 & -2 comparison (tool jig problem)

< Problem description >

Mesh 1
(64 elements)

Mesh 2
(256 elements)

Mesh 3
(1024 elements)

< Finite element models>

 Type-2

 Type-1

0 0.02

( ) 1 0.02 0.10

2 0.10

τ
i
τ
i
τ
i

if M

d i if M

if M


  
 

d = 1
d = 2

d = 0

d = 1

d = 2

d = 0 48



Error indicators

 Type-1 & -2 comparison (tool jig problem)

T
yp

e-
2

< Problem description > < Reference solution>

Mesh 2 Mesh 3

Stress error = 1.80%
Energy error = 5.13%
DOFs = 5324

T
yp

e-
1

Stress error = 3.85%
Energy error = 5.20%
DOFs = 6598

49



Numerical examples

 Tool jig problem

 Wheel problem

Mesh 1
(TRI3: 546 elements)

(QUAD4: 360 elements)

Mesh 1
(64 elements)

Mesh 2
(256 elements)

Mesh 3
(1024 elements)

Mesh 2
(TRI3: 198 elements)

(QUAD4: 2289 elements) 50



Tool jig problem

 4-node quadrilateral element

(a)

(b)

(c)

(a) Results of the standard 4-node quadrilateral element
(b) How cover functions are applied
(c) Results of the adaptive use of cover functions
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Tool jig problem

 3-node triangular element (a) Results of the standard 3-node triangular element
(b) How cover functions are applied
(c) Results of the adaptive use of cover functions

(a)

(b)

(c)
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Automotive wheel problem

53

 3-node triangular & 4-node quadrilateral elements

(a)

(b)

(c) (a)

(b)

(c)

(a) The standard elements
(b) How cover functions are applied
(c) the adaptive use of cover functions



Closure (Topic 2)

 Feasibility of the adaptive used of cover functions to automatically improve finite element

solutions is demonstrated.

 New error indicator based on stress jump and scheme that select the appropriate order of cover

function for each node are used for the automatic procedure.

 The automatic procedure provides significantly improved solution accuracy.

 Further researches on large finite element models and 3D problems are necessary.
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Topic 3. Enriching strain-smoothed 3-node 2D solid element



Strain-smoothed element method for 3-node triangular element

 Strain smoothing process [Lee & Lee, 2018]

 Utilize the strains of elements adjacent to edge of target element.

 Special smoothing domain is not necessary.

 Linear strain fields within the strain-smoothed element.

Step 1. Obtain smoothed strains between the target and neighboring elements

Step 2. Construct linear strain field within the target element 
using smoothed strains between the target and neighboring elements

     (1) (3) (1) (2) (2) (3)1 1 1
, ,

2 2 2
a b c     ε ε ε ε ε ε ε ε ε

     

( ) 1
1 ( 2 )m a b cr p s p

r s p
q p q p q p

   
         

ε ε ε ε

 ( ) ( ) ( ) ( ) ( )
( ) ( )

1k m m k k
m k

A A
A A

 


ε ε ε
•

•

•

with 1, 2,3k 
Strains of target & neighboring elements

Convergence curve

• Cook’s skew beam problem
• Improved convergence behavior

Standard TRI3
Edge-based smoothed TRI3
Strain-smoothed TRI3



Applying strain-smoothing scheme for enriched element

57

 Strain vector of the enriched 3-node element (TRI3d-1)

3 3

1 1

ˆˆ ˆ( , ) ( , ) ( , )i i
i i

r s r s r s
 

    ε ε ε B u B u with
ˆ

ˆ,
ˆ

u
i i

i i v
i i

u

v

  
    
   

u
u u

u


• : standard DOFs vector of node i

• : enriched DOFs vector of node i

• : strain-displacement matrix of standard element 

• : strain-displacement matrix of enriched element corresponding to 

3

1 1

ˆˆ ˆ( , ) ( , ) ( , )
m

i i
i i

r s r s r s
 

    ε ε ε B u B u

Applying strain-smoothing scheme for strain vector corresponding to standard DOFs, 

iu

ˆ iu

B

B̂ ˆ iu

ˆ iu

• : strain-displacement matrix of strain-smoothed element

• : # of nodes belonging to the target and neighboring elements

B

m

 Strain vector of the enriched strain-smoothed 3-node element (SS-TRI3-d1)

Standard term

Enrichment term



Convergence
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 Cook’s skew beam problem

 Problem description

 Convergence behaviors

 Linear elements
 Standard 3-node element (TRI3)
 Strain-smoothed 3-node element (SS-TRI3)
 Quadratic elements
 Enriched 3-node element by linear covers (TRI3-d1)
 Enriched strain-smoothed 3-node element by linear covers (SS-TRI3d-1)
 Cubic elements
 Enriched 3-node element by quadratic covers (TRI3-d2)
 Enriched strain-smoothed 3-node element by quadratic covers (SS-TRI3d-2)

# of elements along edge # of elements along edge # of elements along edge

N
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Linear elements Quadratic elements Cubic elements

Reference
TRI3-d2
SS-TRI3-d2

Reference
TRI3-d1
SS-TRI3-d1

Reference
TRI3
SS-TRI3

2by2 mesh
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Adaptive use of cover functions

59

 Tool jig problem

• Four different meshes are considered.
• Apply the automatic procedure.
• Compare results of TRI3 and SS-TRI3.

 Problem description

 Meshes

Mesh 1
(128 elements)

Mesh 2
(512 elements)

Mesh 3
(2048 elements)

Mesh 4
(8192 elements)



Adaptive use of cover functions

 3-node triangular element (a) Results of the strain-smoothed 3-node triangular element
(b) How cover functions are applied
(c) Results of the adaptive use of cover functions

(a)

(b)

(c)
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Adaptive use of cover functions

61

 Mesh 3 (a) TRI3 & SS-TRI3 elements
(b) How cover functions are applied
(c) The adaptive use of cover functions



Adaptive use of cover functions

62

 Mesh 4 (a) TRI3 & SS-TRI3 elements
(b) How cover functions are applied
(c) The adaptive use of cover functions



Closure (Topic 3)

 Enriched strain-smoothed 3-node triangular element is proposed.

 The strain-smoothed method is applied for strain part corresponding to the standard DOFs.

 The enriched strain-smoothed element shows good convergence behavior.

 When the automatic procedure is applied, the strain-smoothed element uses smaller degrees of

freedom than the standard element and provides sufficiently accurate solution.

 The development of enriched strain-smoothed 4-node tetrahedral element is possible in a similar way.
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4. Conclusions & Future works



Conclusions & Future works

 New enriched finite elements

 Topic 1. Development of the enriched 2D and 3D solid finite elements
 The new enriched elements free from the linear dependence problem are presented.

 The LD problem is avoided in a simple and effective way.

 The new enriched elements pass basic tests and show good convergence behaviors.

 Development of enriched plate & shell free from the linear dependence problem.

 Nonlinear analysis.

 Adaptive use of cover functions

 Topic 2. Automatic procedure to improve FE solutions
 Feasibility of automatically improving FE solutions is shown.

 Consideration of large FE models and 3D problems to verify and improve the automatic procedure.

 Enrichment scheme for smoothed finite element

 Topic 3. Enriching strain-smoothed 3-node solid element
 Strain-smoothing method is applied for constant strain part of the enriched 3-node element.

 When the automatic procedure is applied, the strain-smoothed element uses smaller degrees of 

freedom than the standard element and provides sufficiently accurate solution.

 Development of enriched strain-smoothed 4-node tetrahedral element. 64



66

경청해주셔서감사드립니다.


